L(s) = 1 | + 2·9-s − 2·11-s + 8·19-s + 12·29-s + 16·31-s + 12·41-s − 2·49-s + 24·59-s + 4·61-s − 24·71-s − 16·79-s − 5·81-s − 12·89-s − 4·99-s − 36·101-s + 20·109-s + 3·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 10·169-s + ⋯ |
L(s) = 1 | + 2/3·9-s − 0.603·11-s + 1.83·19-s + 2.22·29-s + 2.87·31-s + 1.87·41-s − 2/7·49-s + 3.12·59-s + 0.512·61-s − 2.84·71-s − 1.80·79-s − 5/9·81-s − 1.27·89-s − 0.402·99-s − 3.58·101-s + 1.91·109-s + 3/11·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 0.769·169-s + ⋯ |
Λ(s)=(=(1210000s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(1210000s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
1210000
= 24⋅54⋅112
|
Sign: |
1
|
Analytic conductor: |
77.1506 |
Root analytic conductor: |
2.96370 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 1210000, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
2.715957380 |
L(21) |
≈ |
2.715957380 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 5 | | 1 |
| 11 | C1 | (1+T)2 |
good | 3 | C22 | 1−2T2+p2T4 |
| 7 | C22 | 1+2T2+p2T4 |
| 13 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 17 | C2 | (1−pT2)2 |
| 19 | C2 | (1−4T+pT2)2 |
| 23 | C22 | 1−10T2+p2T4 |
| 29 | C2 | (1−6T+pT2)2 |
| 31 | C2 | (1−8T+pT2)2 |
| 37 | C2 | (1−12T+pT2)(1+12T+pT2) |
| 41 | C2 | (1−6T+pT2)2 |
| 43 | C22 | 1−22T2+p2T4 |
| 47 | C22 | 1−58T2+p2T4 |
| 53 | C22 | 1−70T2+p2T4 |
| 59 | C2 | (1−12T+pT2)2 |
| 61 | C2 | (1−2T+pT2)2 |
| 67 | C22 | 1−34T2+p2T4 |
| 71 | C2 | (1+12T+pT2)2 |
| 73 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 79 | C2 | (1+8T+pT2)2 |
| 83 | C2 | (1−pT2)2 |
| 89 | C2 | (1+6T+pT2)2 |
| 97 | C22 | 1+2T2+p2T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.904619601947231462797622914774, −9.715580398034927405479650009820, −9.554126878613921355380491692879, −8.514919887081907299396917559478, −8.450224077549487878662739886029, −8.204583419709775097730619486966, −7.41231500998221510336887564749, −7.22756490142002398012909377944, −6.82407253323772120423210213616, −6.29833131786111481222644385444, −5.66435842287262031346413980528, −5.53452081378025250626141060079, −4.68887016627501765658936316281, −4.48517842398633277794619898587, −4.08321711411749834182680975996, −3.03417605940130255093621577693, −2.94430395547598527273179454973, −2.35617466104163218299710698300, −1.21163412986945572149062512868, −0.891608224610582192073426463959,
0.891608224610582192073426463959, 1.21163412986945572149062512868, 2.35617466104163218299710698300, 2.94430395547598527273179454973, 3.03417605940130255093621577693, 4.08321711411749834182680975996, 4.48517842398633277794619898587, 4.68887016627501765658936316281, 5.53452081378025250626141060079, 5.66435842287262031346413980528, 6.29833131786111481222644385444, 6.82407253323772120423210213616, 7.22756490142002398012909377944, 7.41231500998221510336887564749, 8.204583419709775097730619486966, 8.450224077549487878662739886029, 8.514919887081907299396917559478, 9.554126878613921355380491692879, 9.715580398034927405479650009820, 9.904619601947231462797622914774