L(s) = 1 | + 8·3-s − 36·7-s + 18·9-s − 22·11-s + 24·13-s + 8·17-s + 16·19-s − 288·21-s + 312·23-s − 8·27-s − 284·29-s − 432·31-s − 176·33-s − 12·37-s + 192·39-s − 164·41-s − 44·43-s − 152·47-s + 382·49-s + 64·51-s − 124·53-s + 128·57-s − 1.25e3·59-s + 788·61-s − 648·63-s + 752·67-s + 2.49e3·69-s + ⋯ |
L(s) = 1 | + 1.53·3-s − 1.94·7-s + 2/3·9-s − 0.603·11-s + 0.512·13-s + 0.114·17-s + 0.193·19-s − 2.99·21-s + 2.82·23-s − 0.0570·27-s − 1.81·29-s − 2.50·31-s − 0.928·33-s − 0.0533·37-s + 0.788·39-s − 0.624·41-s − 0.156·43-s − 0.471·47-s + 1.11·49-s + 0.175·51-s − 0.321·53-s + 0.297·57-s − 2.77·59-s + 1.65·61-s − 1.29·63-s + 1.37·67-s + 4.35·69-s + ⋯ |
Λ(s)=(=(1210000s/2ΓC(s)2L(s)Λ(4−s)
Λ(s)=(=(1210000s/2ΓC(s+3/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
1210000
= 24⋅54⋅112
|
Sign: |
1
|
Analytic conductor: |
4212.28 |
Root analytic conductor: |
8.05618 |
Motivic weight: |
3 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
2
|
Selberg data: |
(4, 1210000, ( :3/2,3/2), 1)
|
Particular Values
L(2) |
= |
0 |
L(21) |
= |
0 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 5 | | 1 |
| 11 | C1 | (1+pT)2 |
good | 3 | D4 | 1−8T+46T2−8p3T3+p6T4 |
| 7 | D4 | 1+36T+914T2+36p3T3+p6T4 |
| 13 | D4 | 1−24T+3938T2−24p3T3+p6T4 |
| 17 | D4 | 1−8T−7654T2−8p3T3+p6T4 |
| 19 | D4 | 1−16T+10326T2−16p3T3+p6T4 |
| 23 | D4 | 1−312T+48646T2−312p3T3+p6T4 |
| 29 | D4 | 1+284T+52718T2+284p3T3+p6T4 |
| 31 | D4 | 1+432T+104702T2+432p3T3+p6T4 |
| 37 | D4 | 1+12T+73598T2+12p3T3+p6T4 |
| 41 | D4 | 1+4pT+130742T2+4p4T3+p6T4 |
| 43 | D4 | 1+44T+158634T2+44p3T3+p6T4 |
| 47 | D4 | 1+152T+160406T2+152p3T3+p6T4 |
| 53 | D4 | 1+124T+107198T2+124p3T3+p6T4 |
| 59 | D4 | 1+1256T+745142T2+1256p3T3+p6T4 |
| 61 | D4 | 1−788T+595374T2−788p3T3+p6T4 |
| 67 | D4 | 1−752T+730206T2−752p3T3+p6T4 |
| 71 | D4 | 1+1312T+1035182T2+1312p3T3+p6T4 |
| 73 | D4 | 1+1480T+1322730T2+1480p3T3+p6T4 |
| 79 | D4 | 1+40T+488814T2+40p3T3+p6T4 |
| 83 | D4 | 1+1068T+1428634T2+1068p3T3+p6T4 |
| 89 | D4 | 1+132T−745706T2+132p3T3+p6T4 |
| 97 | D4 | 1+444T+1874534T2+444p3T3+p6T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.236852287269372570298592556047, −8.868255018603558898881681780505, −8.697990505102643742249891072183, −8.128367944863051323297909071199, −7.50438161268950006861414663283, −7.28029036160500912654170237694, −6.91437767365896136874890744025, −6.47058956638088605281649281077, −5.76813618761712496432761235672, −5.53756718138606076680279323398, −4.99495174708360247571941581753, −4.25179585954205962223125668975, −3.53343015992190064628514531595, −3.40691031488742424185551637381, −2.91430133487395756053670041068, −2.76350554130163053658792587797, −1.82086466567617497167348347900, −1.29005186019088573770596383251, 0, 0,
1.29005186019088573770596383251, 1.82086466567617497167348347900, 2.76350554130163053658792587797, 2.91430133487395756053670041068, 3.40691031488742424185551637381, 3.53343015992190064628514531595, 4.25179585954205962223125668975, 4.99495174708360247571941581753, 5.53756718138606076680279323398, 5.76813618761712496432761235672, 6.47058956638088605281649281077, 6.91437767365896136874890744025, 7.28029036160500912654170237694, 7.50438161268950006861414663283, 8.128367944863051323297909071199, 8.697990505102643742249891072183, 8.868255018603558898881681780505, 9.236852287269372570298592556047