L(s) = 1 | − 3-s − 4-s + 7-s − 2·9-s + 12-s − 7·13-s + 16-s + 5·19-s − 21-s + 25-s + 5·27-s − 28-s + 8·31-s + 2·36-s + 37-s + 7·39-s − 2·43-s − 48-s − 7·49-s + 7·52-s − 5·57-s − 61-s − 2·63-s − 64-s − 14·67-s − 7·73-s − 75-s + ⋯ |
L(s) = 1 | − 0.577·3-s − 1/2·4-s + 0.377·7-s − 2/3·9-s + 0.288·12-s − 1.94·13-s + 1/4·16-s + 1.14·19-s − 0.218·21-s + 1/5·25-s + 0.962·27-s − 0.188·28-s + 1.43·31-s + 1/3·36-s + 0.164·37-s + 1.12·39-s − 0.304·43-s − 0.144·48-s − 49-s + 0.970·52-s − 0.662·57-s − 0.128·61-s − 0.251·63-s − 1/8·64-s − 1.71·67-s − 0.819·73-s − 0.115·75-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1116 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1116 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.4254283817\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.4254283817\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $\Gal(F_p)$ | $F_p(T)$ |
---|
bad | 2 | $C_2$ | \( 1 + T^{2} \) |
| 3 | $C_2$ | \( 1 + T + p T^{2} \) |
| 31 | $C_1$$\times$$C_2$ | \( ( 1 - T )( 1 - 7 T + p T^{2} ) \) |
good | 5 | $C_2^2$ | \( 1 - T^{2} + p^{2} T^{4} \) |
| 7 | $C_2$$\times$$C_2$ | \( ( 1 - 3 T + p T^{2} )( 1 + 2 T + p T^{2} ) \) |
| 11 | $C_2^2$ | \( 1 + 3 T^{2} + p^{2} T^{4} \) |
| 13 | $C_2$$\times$$C_2$ | \( ( 1 + T + p T^{2} )( 1 + 6 T + p T^{2} ) \) |
| 17 | $C_2^2$ | \( 1 - 10 T^{2} + p^{2} T^{4} \) |
| 19 | $C_2$$\times$$C_2$ | \( ( 1 - 5 T + p T^{2} )( 1 + p T^{2} ) \) |
| 23 | $C_2^2$ | \( 1 - 25 T^{2} + p^{2} T^{4} \) |
| 29 | $C_2^2$ | \( 1 + 8 T^{2} + p^{2} T^{4} \) |
| 37 | $C_2$$\times$$C_2$ | \( ( 1 - 3 T + p T^{2} )( 1 + 2 T + p T^{2} ) \) |
| 41 | $C_2^2$ | \( 1 - 7 T^{2} + p^{2} T^{4} \) |
| 43 | $C_2$$\times$$C_2$ | \( ( 1 - 4 T + p T^{2} )( 1 + 6 T + p T^{2} ) \) |
| 47 | $C_2^2$ | \( 1 - 70 T^{2} + p^{2} T^{4} \) |
| 53 | $C_2$ | \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \) |
| 59 | $C_2$ | \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \) |
| 61 | $C_2$$\times$$C_2$ | \( ( 1 - 12 T + p T^{2} )( 1 + 13 T + p T^{2} ) \) |
| 67 | $C_2$$\times$$C_2$ | \( ( 1 + 2 T + p T^{2} )( 1 + 12 T + p T^{2} ) \) |
| 71 | $C_2^2$ | \( 1 + 8 T^{2} + p^{2} T^{4} \) |
| 73 | $C_2$$\times$$C_2$ | \( ( 1 - 4 T + p T^{2} )( 1 + 11 T + p T^{2} ) \) |
| 79 | $C_2$$\times$$C_2$ | \( ( 1 - 5 T + p T^{2} )( 1 + p T^{2} ) \) |
| 83 | $C_2^2$ | \( 1 - 5 T^{2} + p^{2} T^{4} \) |
| 89 | $C_2^2$ | \( 1 - 72 T^{2} + p^{2} T^{4} \) |
| 97 | $C_2$$\times$$C_2$ | \( ( 1 - 8 T + p T^{2} )( 1 + 2 T + p T^{2} ) \) |
show more | | |
show less | | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−14.08680482312613066827079930668, −13.57861727831866455994748310876, −12.70215991683975821083442252589, −11.94883798073866020533120603588, −11.80628704938984376814637709077, −10.89809460716251272126837437428, −10.06423424076045358628708764026, −9.599559494960929771349910383163, −8.718072445424649794509158417192, −7.899472857564502415835684557922, −7.19704267596062297832151605893, −6.12887186529772388269728794943, −5.15202294391188716329856472167, −4.65762024378348674735850325026, −2.92009081916655404042712155697,
2.92009081916655404042712155697, 4.65762024378348674735850325026, 5.15202294391188716329856472167, 6.12887186529772388269728794943, 7.19704267596062297832151605893, 7.899472857564502415835684557922, 8.718072445424649794509158417192, 9.599559494960929771349910383163, 10.06423424076045358628708764026, 10.89809460716251272126837437428, 11.80628704938984376814637709077, 11.94883798073866020533120603588, 12.70215991683975821083442252589, 13.57861727831866455994748310876, 14.08680482312613066827079930668