L(s) = 1 | − 3-s − 4-s + 7-s − 2·9-s + 12-s − 7·13-s + 16-s + 5·19-s − 21-s + 25-s + 5·27-s − 28-s + 8·31-s + 2·36-s + 37-s + 7·39-s − 2·43-s − 48-s − 7·49-s + 7·52-s − 5·57-s − 61-s − 2·63-s − 64-s − 14·67-s − 7·73-s − 75-s + ⋯ |
L(s) = 1 | − 0.577·3-s − 1/2·4-s + 0.377·7-s − 2/3·9-s + 0.288·12-s − 1.94·13-s + 1/4·16-s + 1.14·19-s − 0.218·21-s + 1/5·25-s + 0.962·27-s − 0.188·28-s + 1.43·31-s + 1/3·36-s + 0.164·37-s + 1.12·39-s − 0.304·43-s − 0.144·48-s − 49-s + 0.970·52-s − 0.662·57-s − 0.128·61-s − 0.251·63-s − 1/8·64-s − 1.71·67-s − 0.819·73-s − 0.115·75-s + ⋯ |
Λ(s)=(=(1116s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(1116s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
1116
= 22⋅32⋅31
|
Sign: |
1
|
Analytic conductor: |
0.0711571 |
Root analytic conductor: |
0.516481 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
yes
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 1116, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
0.4254283817 |
L(21) |
≈ |
0.4254283817 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | C2 | 1+T2 |
| 3 | C2 | 1+T+pT2 |
| 31 | C1×C2 | (1−T)(1−7T+pT2) |
good | 5 | C22 | 1−T2+p2T4 |
| 7 | C2×C2 | (1−3T+pT2)(1+2T+pT2) |
| 11 | C22 | 1+3T2+p2T4 |
| 13 | C2×C2 | (1+T+pT2)(1+6T+pT2) |
| 17 | C22 | 1−10T2+p2T4 |
| 19 | C2×C2 | (1−5T+pT2)(1+pT2) |
| 23 | C22 | 1−25T2+p2T4 |
| 29 | C22 | 1+8T2+p2T4 |
| 37 | C2×C2 | (1−3T+pT2)(1+2T+pT2) |
| 41 | C22 | 1−7T2+p2T4 |
| 43 | C2×C2 | (1−4T+pT2)(1+6T+pT2) |
| 47 | C22 | 1−70T2+p2T4 |
| 53 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 59 | C2 | (1−10T+pT2)(1+10T+pT2) |
| 61 | C2×C2 | (1−12T+pT2)(1+13T+pT2) |
| 67 | C2×C2 | (1+2T+pT2)(1+12T+pT2) |
| 71 | C22 | 1+8T2+p2T4 |
| 73 | C2×C2 | (1−4T+pT2)(1+11T+pT2) |
| 79 | C2×C2 | (1−5T+pT2)(1+pT2) |
| 83 | C22 | 1−5T2+p2T4 |
| 89 | C22 | 1−72T2+p2T4 |
| 97 | C2×C2 | (1−8T+pT2)(1+2T+pT2) |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−14.08680482312613066827079930668, −13.57861727831866455994748310876, −12.70215991683975821083442252589, −11.94883798073866020533120603588, −11.80628704938984376814637709077, −10.89809460716251272126837437428, −10.06423424076045358628708764026, −9.599559494960929771349910383163, −8.718072445424649794509158417192, −7.899472857564502415835684557922, −7.19704267596062297832151605893, −6.12887186529772388269728794943, −5.15202294391188716329856472167, −4.65762024378348674735850325026, −2.92009081916655404042712155697,
2.92009081916655404042712155697, 4.65762024378348674735850325026, 5.15202294391188716329856472167, 6.12887186529772388269728794943, 7.19704267596062297832151605893, 7.899472857564502415835684557922, 8.718072445424649794509158417192, 9.599559494960929771349910383163, 10.06423424076045358628708764026, 10.89809460716251272126837437428, 11.80628704938984376814637709077, 11.94883798073866020533120603588, 12.70215991683975821083442252589, 13.57861727831866455994748310876, 14.08680482312613066827079930668