L(s) = 1 | + 2-s − 3·5-s − 7-s − 8-s − 3·10-s − 6·11-s + 13-s − 14-s − 16-s − 6·17-s + 4·19-s − 6·22-s − 6·23-s + 5·25-s + 26-s − 9·29-s + 10·31-s − 6·34-s + 3·35-s − 14·37-s + 4·38-s + 3·40-s + 6·41-s + 4·43-s − 6·46-s + 6·47-s + 5·50-s + ⋯ |
L(s) = 1 | + 0.707·2-s − 1.34·5-s − 0.377·7-s − 0.353·8-s − 0.948·10-s − 1.80·11-s + 0.277·13-s − 0.267·14-s − 1/4·16-s − 1.45·17-s + 0.917·19-s − 1.27·22-s − 1.25·23-s + 25-s + 0.196·26-s − 1.67·29-s + 1.79·31-s − 1.02·34-s + 0.507·35-s − 2.30·37-s + 0.648·38-s + 0.474·40-s + 0.937·41-s + 0.609·43-s − 0.884·46-s + 0.875·47-s + 0.707·50-s + ⋯ |
Λ(s)=(=(1285956s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(1285956s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
1285956
= 22⋅38⋅72
|
Sign: |
1
|
Analytic conductor: |
81.9936 |
Root analytic conductor: |
3.00915 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 1285956, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
0.1874651509 |
L(21) |
≈ |
0.1874651509 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | C2 | 1−T+T2 |
| 3 | | 1 |
| 7 | C2 | 1+T+T2 |
good | 5 | C22 | 1+3T+4T2+3pT3+p2T4 |
| 11 | C22 | 1+6T+25T2+6pT3+p2T4 |
| 13 | C22 | 1−T−12T2−pT3+p2T4 |
| 17 | C2 | (1+3T+pT2)2 |
| 19 | C2 | (1−2T+pT2)2 |
| 23 | C22 | 1+6T+13T2+6pT3+p2T4 |
| 29 | C22 | 1+9T+52T2+9pT3+p2T4 |
| 31 | C22 | 1−10T+69T2−10pT3+p2T4 |
| 37 | C2 | (1+7T+pT2)2 |
| 41 | C22 | 1−6T−5T2−6pT3+p2T4 |
| 43 | C22 | 1−4T−27T2−4pT3+p2T4 |
| 47 | C22 | 1−6T−11T2−6pT3+p2T4 |
| 53 | C2 | (1−6T+pT2)2 |
| 59 | C22 | 1+6T−23T2+6pT3+p2T4 |
| 61 | C22 | 1+11T+60T2+11pT3+p2T4 |
| 67 | C22 | 1+2T−63T2+2pT3+p2T4 |
| 71 | C2 | (1+12T+pT2)2 |
| 73 | C2 | (1+7T+pT2)2 |
| 79 | C22 | 1+2T−75T2+2pT3+p2T4 |
| 83 | C22 | 1−6T−47T2−6pT3+p2T4 |
| 89 | C2 | (1+3T+pT2)2 |
| 97 | C2 | (1−5T+pT2)(1+19T+pT2) |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.16521088711055462945433026023, −9.646340327924616780799044735719, −9.062859002339186922990670320013, −8.645155073176911816416612910334, −8.528183196034112520628861756681, −7.70518060214073985202439589059, −7.57574498324002078130841192484, −7.32559103687776293368506055623, −6.68691683329063027033795307091, −6.10538094323615451776469843420, −5.72923805517524127476159205205, −5.29973904621100719966743777549, −4.78143807462183318905549923389, −4.24975329947642706172953511492, −4.01754701711491797000059941657, −3.45912979118964922420805816391, −2.68808397404229597803729587407, −2.65469262308591094433482924622, −1.54331372373995417456064731116, −0.16476133390568287054959784593,
0.16476133390568287054959784593, 1.54331372373995417456064731116, 2.65469262308591094433482924622, 2.68808397404229597803729587407, 3.45912979118964922420805816391, 4.01754701711491797000059941657, 4.24975329947642706172953511492, 4.78143807462183318905549923389, 5.29973904621100719966743777549, 5.72923805517524127476159205205, 6.10538094323615451776469843420, 6.68691683329063027033795307091, 7.32559103687776293368506055623, 7.57574498324002078130841192484, 7.70518060214073985202439589059, 8.528183196034112520628861756681, 8.645155073176911816416612910334, 9.062859002339186922990670320013, 9.646340327924616780799044735719, 10.16521088711055462945433026023