L(s) = 1 | + 2-s − 3·5-s − 7-s − 8-s − 3·10-s + 3·11-s − 2·13-s − 14-s − 16-s − 3·17-s + 7·19-s + 3·22-s + 9·23-s + 5·25-s − 2·26-s + 6·29-s − 8·31-s − 3·34-s + 3·35-s + 37-s + 7·38-s + 3·40-s + 6·41-s − 2·43-s + 9·46-s − 6·49-s + 5·50-s + ⋯ |
L(s) = 1 | + 0.707·2-s − 1.34·5-s − 0.377·7-s − 0.353·8-s − 0.948·10-s + 0.904·11-s − 0.554·13-s − 0.267·14-s − 1/4·16-s − 0.727·17-s + 1.60·19-s + 0.639·22-s + 1.87·23-s + 25-s − 0.392·26-s + 1.11·29-s − 1.43·31-s − 0.514·34-s + 0.507·35-s + 0.164·37-s + 1.13·38-s + 0.474·40-s + 0.937·41-s − 0.304·43-s + 1.32·46-s − 6/7·49-s + 0.707·50-s + ⋯ |
Λ(s)=(=(1285956s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(1285956s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
1285956
= 22⋅38⋅72
|
Sign: |
1
|
Analytic conductor: |
81.9936 |
Root analytic conductor: |
3.00915 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 1285956, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
1.885595855 |
L(21) |
≈ |
1.885595855 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | C2 | 1−T+T2 |
| 3 | | 1 |
| 7 | C2 | 1+T+pT2 |
good | 5 | C22 | 1+3T+4T2+3pT3+p2T4 |
| 11 | C22 | 1−3T−2T2−3pT3+p2T4 |
| 13 | C2 | (1+T+pT2)2 |
| 17 | C22 | 1+3T−8T2+3pT3+p2T4 |
| 19 | C2 | (1−8T+pT2)(1+T+pT2) |
| 23 | C22 | 1−9T+58T2−9pT3+p2T4 |
| 29 | C2 | (1−3T+pT2)2 |
| 31 | C22 | 1+8T+33T2+8pT3+p2T4 |
| 37 | C2 | (1−11T+pT2)(1+10T+pT2) |
| 41 | C2 | (1−3T+pT2)2 |
| 43 | C2 | (1+T+pT2)2 |
| 47 | C22 | 1−pT2+p2T4 |
| 53 | C22 | 1+3T−44T2+3pT3+p2T4 |
| 59 | C22 | 1−pT2+p2T4 |
| 61 | C22 | 1+2T−57T2+2pT3+p2T4 |
| 67 | C22 | 1−4T−51T2−4pT3+p2T4 |
| 71 | C2 | (1−12T+pT2)2 |
| 73 | C22 | 1+11T+48T2+11pT3+p2T4 |
| 79 | C22 | 1−16T+177T2−16pT3+p2T4 |
| 83 | C2 | (1+9T+pT2)2 |
| 89 | C22 | 1+3T−80T2+3pT3+p2T4 |
| 97 | C2 | (1+T+pT2)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.763371079700271750033845065730, −9.698159435431574631186755687159, −9.022242203062570169394821173371, −8.994483356206098040072409811059, −8.402216170363493012973867422393, −7.73850861012365371308687606563, −7.62880991567855686257310721311, −7.03176463761525780201726242480, −6.63105713034330587579294960008, −6.49296630974517161359268483236, −5.59403279720130216399926511526, −5.18042310440136433883196151622, −4.88888309057666382372367342116, −4.25072262521787065918735842529, −3.98369057993054870699753205744, −3.23075419705373495479617535382, −3.18771199687414758820583624022, −2.43325876126771577361709349264, −1.36262377345782059353876066622, −0.58518293903836423228401425110,
0.58518293903836423228401425110, 1.36262377345782059353876066622, 2.43325876126771577361709349264, 3.18771199687414758820583624022, 3.23075419705373495479617535382, 3.98369057993054870699753205744, 4.25072262521787065918735842529, 4.88888309057666382372367342116, 5.18042310440136433883196151622, 5.59403279720130216399926511526, 6.49296630974517161359268483236, 6.63105713034330587579294960008, 7.03176463761525780201726242480, 7.62880991567855686257310721311, 7.73850861012365371308687606563, 8.402216170363493012973867422393, 8.994483356206098040072409811059, 9.022242203062570169394821173371, 9.698159435431574631186755687159, 9.763371079700271750033845065730