L(s) = 1 | + 2-s − 6·5-s − 4·7-s − 8-s − 6·10-s + 6·11-s − 2·13-s − 4·14-s − 16-s + 6·17-s − 2·19-s + 6·22-s + 12·23-s + 17·25-s − 2·26-s + 9·29-s + 7·31-s + 6·34-s + 24·35-s + 10·37-s − 2·38-s + 6·40-s + 4·43-s + 12·46-s + 12·47-s + 9·49-s + 17·50-s + ⋯ |
L(s) = 1 | + 0.707·2-s − 2.68·5-s − 1.51·7-s − 0.353·8-s − 1.89·10-s + 1.80·11-s − 0.554·13-s − 1.06·14-s − 1/4·16-s + 1.45·17-s − 0.458·19-s + 1.27·22-s + 2.50·23-s + 17/5·25-s − 0.392·26-s + 1.67·29-s + 1.25·31-s + 1.02·34-s + 4.05·35-s + 1.64·37-s − 0.324·38-s + 0.948·40-s + 0.609·43-s + 1.76·46-s + 1.75·47-s + 9/7·49-s + 2.40·50-s + ⋯ |
Λ(s)=(=(1285956s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(1285956s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
1285956
= 22⋅38⋅72
|
Sign: |
1
|
Analytic conductor: |
81.9936 |
Root analytic conductor: |
3.00915 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 1285956, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
1.690662146 |
L(21) |
≈ |
1.690662146 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | C2 | 1−T+T2 |
| 3 | | 1 |
| 7 | C2 | 1+4T+pT2 |
good | 5 | C2 | (1+3T+pT2)2 |
| 11 | C2 | (1−3T+pT2)2 |
| 13 | C2 | (1−5T+pT2)(1+7T+pT2) |
| 17 | C22 | 1−6T+19T2−6pT3+p2T4 |
| 19 | C22 | 1+2T−15T2+2pT3+p2T4 |
| 23 | C2 | (1−6T+pT2)2 |
| 29 | C22 | 1−9T+52T2−9pT3+p2T4 |
| 31 | C2 | (1−11T+pT2)(1+4T+pT2) |
| 37 | C2 | (1−11T+pT2)(1+T+pT2) |
| 41 | C22 | 1−pT2+p2T4 |
| 43 | C22 | 1−4T−27T2−4pT3+p2T4 |
| 47 | C22 | 1−12T+97T2−12pT3+p2T4 |
| 53 | C22 | 1+3T−44T2+3pT3+p2T4 |
| 59 | C22 | 1+3T−50T2+3pT3+p2T4 |
| 61 | C22 | 1−4T−45T2−4pT3+p2T4 |
| 67 | C22 | 1+2T−63T2+2pT3+p2T4 |
| 71 | C2 | (1+pT2)2 |
| 73 | C22 | 1+2T−69T2+2pT3+p2T4 |
| 79 | C22 | 1+5T−54T2+5pT3+p2T4 |
| 83 | C22 | 1−9T−2T2−9pT3+p2T4 |
| 89 | C22 | 1+6T−53T2+6pT3+p2T4 |
| 97 | C22 | 1−13T+72T2−13pT3+p2T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.787139695390997440403493160242, −9.726054653558983734764329727628, −9.070680312802161235305342108040, −8.851647777639541928662659320889, −8.353231050658178692623954606532, −7.85397161044719272567085924444, −7.52661575484205842675603170925, −7.06952485579367031972517453728, −6.63261219628726278398161055772, −6.48825635455924513510815005127, −5.81213056561974991646725969432, −5.21324057022628905359156653046, −4.49991948914571717453111671184, −4.24487051295829938467574555157, −4.02488429265996079437928500239, −3.38669133562200595296484428438, −2.96768067327223288966911017286, −2.82458963834384751437891636840, −0.975484638579017762636638776897, −0.70598724177145393018985165130,
0.70598724177145393018985165130, 0.975484638579017762636638776897, 2.82458963834384751437891636840, 2.96768067327223288966911017286, 3.38669133562200595296484428438, 4.02488429265996079437928500239, 4.24487051295829938467574555157, 4.49991948914571717453111671184, 5.21324057022628905359156653046, 5.81213056561974991646725969432, 6.48825635455924513510815005127, 6.63261219628726278398161055772, 7.06952485579367031972517453728, 7.52661575484205842675603170925, 7.85397161044719272567085924444, 8.353231050658178692623954606532, 8.851647777639541928662659320889, 9.070680312802161235305342108040, 9.726054653558983734764329727628, 9.787139695390997440403493160242