Properties

Label 4-1134e2-1.1-c1e2-0-42
Degree $4$
Conductor $1285956$
Sign $1$
Analytic cond. $81.9936$
Root an. cond. $3.00915$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 4·5-s + 7-s + 8-s + 4·10-s − 2·11-s + 12·13-s − 14-s − 16-s − 2·17-s + 4·19-s + 2·22-s + 23-s + 5·25-s − 12·26-s + 8·29-s + 9·31-s + 2·34-s − 4·35-s − 8·37-s − 4·38-s − 4·40-s + 6·41-s + 4·43-s − 46-s + 9·47-s − 6·49-s + ⋯
L(s)  = 1  − 0.707·2-s − 1.78·5-s + 0.377·7-s + 0.353·8-s + 1.26·10-s − 0.603·11-s + 3.32·13-s − 0.267·14-s − 1/4·16-s − 0.485·17-s + 0.917·19-s + 0.426·22-s + 0.208·23-s + 25-s − 2.35·26-s + 1.48·29-s + 1.61·31-s + 0.342·34-s − 0.676·35-s − 1.31·37-s − 0.648·38-s − 0.632·40-s + 0.937·41-s + 0.609·43-s − 0.147·46-s + 1.31·47-s − 6/7·49-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1285956 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1285956 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(1285956\)    =    \(2^{2} \cdot 3^{8} \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(81.9936\)
Root analytic conductor: \(3.00915\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 1285956,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.343639026\)
\(L(\frac12)\) \(\approx\) \(1.343639026\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( 1 + T + T^{2} \)
3 \( 1 \)
7$C_2$ \( 1 - T + p T^{2} \)
good5$C_2^2$ \( 1 + 4 T + 11 T^{2} + 4 p T^{3} + p^{2} T^{4} \)
11$C_2^2$ \( 1 + 2 T - 7 T^{2} + 2 p T^{3} + p^{2} T^{4} \)
13$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
17$C_2^2$ \( 1 + 2 T - 13 T^{2} + 2 p T^{3} + p^{2} T^{4} \)
19$C_2^2$ \( 1 - 4 T - 3 T^{2} - 4 p T^{3} + p^{2} T^{4} \)
23$C_2^2$ \( 1 - T - 22 T^{2} - p T^{3} + p^{2} T^{4} \)
29$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
31$C_2^2$ \( 1 - 9 T + 50 T^{2} - 9 p T^{3} + p^{2} T^{4} \)
37$C_2^2$ \( 1 + 8 T + 27 T^{2} + 8 p T^{3} + p^{2} T^{4} \)
41$C_2$ \( ( 1 - 3 T + p T^{2} )^{2} \)
43$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
47$C_2^2$ \( 1 - 9 T + 34 T^{2} - 9 p T^{3} + p^{2} T^{4} \)
53$C_2^2$ \( 1 - 12 T + 91 T^{2} - 12 p T^{3} + p^{2} T^{4} \)
59$C_2^2$ \( 1 + 4 T - 43 T^{2} + 4 p T^{3} + p^{2} T^{4} \)
61$C_2^2$ \( 1 + 6 T - 25 T^{2} + 6 p T^{3} + p^{2} T^{4} \)
67$C_2^2$ \( 1 - 14 T + 129 T^{2} - 14 p T^{3} + p^{2} T^{4} \)
71$C_2$ \( ( 1 + T + p T^{2} )^{2} \)
73$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 17 T + p T^{2} ) \)
79$C_2^2$ \( 1 - 3 T - 70 T^{2} - 3 p T^{3} + p^{2} T^{4} \)
83$C_2$ \( ( 1 - 14 T + p T^{2} )^{2} \)
89$C_2^2$ \( 1 - 3 T - 80 T^{2} - 3 p T^{3} + p^{2} T^{4} \)
97$C_2$ \( ( 1 - 10 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.25737184758959382265477222857, −9.420141844727443610376752719788, −8.916149983533698404039515493193, −8.820794616823318769592956929817, −8.202532682907544812943221800991, −8.181077312189295711908508927066, −7.77924231238583808540504852395, −7.30154233033532838532509207918, −6.82105643504306638255227336053, −6.15213765450410592060512003283, −6.09185949045987581664774918540, −5.27086118095282339132565153868, −4.71096349616497830434552604123, −4.32458217783164232559932871444, −3.69568954276267644779935056547, −3.56859320293782943933975143561, −2.92101296086047482613191160163, −2.02650303208289799089492690495, −0.902563278206519705593890782152, −0.876661825813929335953256138876, 0.876661825813929335953256138876, 0.902563278206519705593890782152, 2.02650303208289799089492690495, 2.92101296086047482613191160163, 3.56859320293782943933975143561, 3.69568954276267644779935056547, 4.32458217783164232559932871444, 4.71096349616497830434552604123, 5.27086118095282339132565153868, 6.09185949045987581664774918540, 6.15213765450410592060512003283, 6.82105643504306638255227336053, 7.30154233033532838532509207918, 7.77924231238583808540504852395, 8.181077312189295711908508927066, 8.202532682907544812943221800991, 8.820794616823318769592956929817, 8.916149983533698404039515493193, 9.420141844727443610376752719788, 10.25737184758959382265477222857

Graph of the $Z$-function along the critical line