L(s) = 1 | − 2-s − 4·5-s + 7-s + 8-s + 4·10-s − 2·11-s + 12·13-s − 14-s − 16-s − 2·17-s + 4·19-s + 2·22-s + 23-s + 5·25-s − 12·26-s + 8·29-s + 9·31-s + 2·34-s − 4·35-s − 8·37-s − 4·38-s − 4·40-s + 6·41-s + 4·43-s − 46-s + 9·47-s − 6·49-s + ⋯ |
L(s) = 1 | − 0.707·2-s − 1.78·5-s + 0.377·7-s + 0.353·8-s + 1.26·10-s − 0.603·11-s + 3.32·13-s − 0.267·14-s − 1/4·16-s − 0.485·17-s + 0.917·19-s + 0.426·22-s + 0.208·23-s + 25-s − 2.35·26-s + 1.48·29-s + 1.61·31-s + 0.342·34-s − 0.676·35-s − 1.31·37-s − 0.648·38-s − 0.632·40-s + 0.937·41-s + 0.609·43-s − 0.147·46-s + 1.31·47-s − 6/7·49-s + ⋯ |
Λ(s)=(=(1285956s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(1285956s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
1285956
= 22⋅38⋅72
|
Sign: |
1
|
Analytic conductor: |
81.9936 |
Root analytic conductor: |
3.00915 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 1285956, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
1.343639026 |
L(21) |
≈ |
1.343639026 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | C2 | 1+T+T2 |
| 3 | | 1 |
| 7 | C2 | 1−T+pT2 |
good | 5 | C22 | 1+4T+11T2+4pT3+p2T4 |
| 11 | C22 | 1+2T−7T2+2pT3+p2T4 |
| 13 | C2 | (1−6T+pT2)2 |
| 17 | C22 | 1+2T−13T2+2pT3+p2T4 |
| 19 | C22 | 1−4T−3T2−4pT3+p2T4 |
| 23 | C22 | 1−T−22T2−pT3+p2T4 |
| 29 | C2 | (1−4T+pT2)2 |
| 31 | C22 | 1−9T+50T2−9pT3+p2T4 |
| 37 | C22 | 1+8T+27T2+8pT3+p2T4 |
| 41 | C2 | (1−3T+pT2)2 |
| 43 | C2 | (1−2T+pT2)2 |
| 47 | C22 | 1−9T+34T2−9pT3+p2T4 |
| 53 | C22 | 1−12T+91T2−12pT3+p2T4 |
| 59 | C22 | 1+4T−43T2+4pT3+p2T4 |
| 61 | C22 | 1+6T−25T2+6pT3+p2T4 |
| 67 | C22 | 1−14T+129T2−14pT3+p2T4 |
| 71 | C2 | (1+T+pT2)2 |
| 73 | C2 | (1−10T+pT2)(1+17T+pT2) |
| 79 | C22 | 1−3T−70T2−3pT3+p2T4 |
| 83 | C2 | (1−14T+pT2)2 |
| 89 | C22 | 1−3T−80T2−3pT3+p2T4 |
| 97 | C2 | (1−10T+pT2)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.25737184758959382265477222857, −9.420141844727443610376752719788, −8.916149983533698404039515493193, −8.820794616823318769592956929817, −8.202532682907544812943221800991, −8.181077312189295711908508927066, −7.77924231238583808540504852395, −7.30154233033532838532509207918, −6.82105643504306638255227336053, −6.15213765450410592060512003283, −6.09185949045987581664774918540, −5.27086118095282339132565153868, −4.71096349616497830434552604123, −4.32458217783164232559932871444, −3.69568954276267644779935056547, −3.56859320293782943933975143561, −2.92101296086047482613191160163, −2.02650303208289799089492690495, −0.902563278206519705593890782152, −0.876661825813929335953256138876,
0.876661825813929335953256138876, 0.902563278206519705593890782152, 2.02650303208289799089492690495, 2.92101296086047482613191160163, 3.56859320293782943933975143561, 3.69568954276267644779935056547, 4.32458217783164232559932871444, 4.71096349616497830434552604123, 5.27086118095282339132565153868, 6.09185949045987581664774918540, 6.15213765450410592060512003283, 6.82105643504306638255227336053, 7.30154233033532838532509207918, 7.77924231238583808540504852395, 8.181077312189295711908508927066, 8.202532682907544812943221800991, 8.820794616823318769592956929817, 8.916149983533698404039515493193, 9.420141844727443610376752719788, 10.25737184758959382265477222857