Properties

Label 4-114075-1.1-c1e2-0-12
Degree $4$
Conductor $114075$
Sign $-1$
Analytic cond. $7.27352$
Root an. cond. $1.64223$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 4·4-s + 9-s − 4·12-s − 4·13-s + 12·16-s + 25-s + 27-s − 4·36-s − 4·39-s − 20·43-s + 12·48-s + 5·49-s + 16·52-s − 2·61-s − 32·64-s + 75-s − 2·79-s + 81-s − 4·100-s − 8·103-s − 4·108-s − 4·117-s − 13·121-s + 127-s − 20·129-s + 131-s + ⋯
L(s)  = 1  + 0.577·3-s − 2·4-s + 1/3·9-s − 1.15·12-s − 1.10·13-s + 3·16-s + 1/5·25-s + 0.192·27-s − 2/3·36-s − 0.640·39-s − 3.04·43-s + 1.73·48-s + 5/7·49-s + 2.21·52-s − 0.256·61-s − 4·64-s + 0.115·75-s − 0.225·79-s + 1/9·81-s − 2/5·100-s − 0.788·103-s − 0.384·108-s − 0.369·117-s − 1.18·121-s + 0.0887·127-s − 1.76·129-s + 0.0873·131-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 114075 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 114075 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(114075\)    =    \(3^{3} \cdot 5^{2} \cdot 13^{2}\)
Sign: $-1$
Analytic conductor: \(7.27352\)
Root analytic conductor: \(1.64223\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 114075,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3$C_1$ \( 1 - T \)
5$C_1$$\times$$C_1$ \( ( 1 - T )( 1 + T ) \)
13$C_2$ \( 1 + 4 T + p T^{2} \)
good2$C_2$ \( ( 1 + p T^{2} )^{2} \)
7$C_2^2$ \( 1 - 5 T^{2} + p^{2} T^{4} \)
11$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + 3 T + p T^{2} ) \)
17$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + 3 T + p T^{2} ) \)
19$C_2$ \( ( 1 - p T^{2} )^{2} \)
23$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + 3 T + p T^{2} ) \)
29$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
31$C_2^2$ \( 1 - 26 T^{2} + p^{2} T^{4} \)
37$C_2^2$ \( 1 + 7 T^{2} + p^{2} T^{4} \)
41$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + 3 T + p T^{2} ) \)
43$C_2$ \( ( 1 + 10 T + p T^{2} )^{2} \)
47$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
53$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + 3 T + p T^{2} ) \)
59$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
61$C_2$ \( ( 1 + T + p T^{2} )^{2} \)
67$C_2$ \( ( 1 - p T^{2} )^{2} \)
71$C_2$ \( ( 1 - 9 T + p T^{2} )( 1 + 9 T + p T^{2} ) \)
73$C_2$ \( ( 1 - 16 T + p T^{2} )( 1 + 16 T + p T^{2} ) \)
79$C_2$ \( ( 1 + T + p T^{2} )^{2} \)
83$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
89$C_2$ \( ( 1 - 15 T + p T^{2} )( 1 + 15 T + p T^{2} ) \)
97$C_2^2$ \( 1 - 113 T^{2} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.183445797708240241547537842518, −8.802658230313919768942474726835, −8.313374749819522605001003573021, −8.002472286697819429915593867217, −7.40459135692311520049395683465, −6.86388354399925733820641588143, −6.09488833109798048246594013459, −5.38428624544254557921944694796, −4.91037316510803997295828784474, −4.61988642871218577590386474614, −3.83251768728497194117754989734, −3.41730733356855009811000012119, −2.58417493630661944832423793073, −1.39233296444203054465442043556, 0, 1.39233296444203054465442043556, 2.58417493630661944832423793073, 3.41730733356855009811000012119, 3.83251768728497194117754989734, 4.61988642871218577590386474614, 4.91037316510803997295828784474, 5.38428624544254557921944694796, 6.09488833109798048246594013459, 6.86388354399925733820641588143, 7.40459135692311520049395683465, 8.002472286697819429915593867217, 8.313374749819522605001003573021, 8.802658230313919768942474726835, 9.183445797708240241547537842518

Graph of the $Z$-function along the critical line