L(s) = 1 | − 9-s + 16·29-s − 4·41-s + 10·49-s − 4·61-s + 81-s + 12·89-s + 12·109-s − 18·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s − 22·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + ⋯ |
L(s) = 1 | − 1/3·9-s + 2.97·29-s − 0.624·41-s + 10/7·49-s − 0.512·61-s + 1/9·81-s + 1.27·89-s + 1.14·109-s − 1.63·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s − 1.69·169-s + 0.0760·173-s + 0.0747·179-s + 0.0743·181-s + 0.0723·191-s + 0.0719·193-s + 0.0712·197-s + 0.0708·199-s + 0.0688·211-s + ⋯ |
Λ(s)=(=(1440000s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(1440000s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
1440000
= 28⋅32⋅54
|
Sign: |
1
|
Analytic conductor: |
91.8156 |
Root analytic conductor: |
3.09548 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
yes
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 1440000, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
2.010374936 |
L(21) |
≈ |
2.010374936 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | C2 | 1+T2 |
| 5 | | 1 |
good | 7 | C22 | 1−10T2+p2T4 |
| 11 | C2 | (1−2T+pT2)(1+2T+pT2) |
| 13 | C2 | (1−2T+pT2)(1+2T+pT2) |
| 17 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 19 | C2 | (1−8T+pT2)(1+8T+pT2) |
| 23 | C22 | 1−30T2+p2T4 |
| 29 | C2 | (1−8T+pT2)2 |
| 31 | C2 | (1+pT2)2 |
| 37 | C2 | (1−10T+pT2)(1+10T+pT2) |
| 41 | C2 | (1+2T+pT2)2 |
| 43 | C22 | 1+58T2+p2T4 |
| 47 | C2 | (1−pT2)2 |
| 53 | C2 | (1−10T+pT2)(1+10T+pT2) |
| 59 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 61 | C2 | (1+2T+pT2)2 |
| 67 | C22 | 1−70T2+p2T4 |
| 71 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 73 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 79 | C2 | (1−8T+pT2)(1+8T+pT2) |
| 83 | C22 | 1−150T2+p2T4 |
| 89 | C2 | (1−6T+pT2)2 |
| 97 | C2 | (1−8T+pT2)(1+8T+pT2) |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.086617533135571460878080127526, −7.44199546611001412152591514822, −7.10310581312335794207600971609, −6.50771235023982342244402809611, −6.32905911193264988381564486890, −5.77463337632978826572906432153, −5.26496608768409945141592593741, −4.75849421391656104550174883207, −4.46844863799473902557371302274, −3.80355985455103655387795748737, −3.26377989137007741662596899565, −2.72277723195492161686488945406, −2.28336673686736196236123221592, −1.38451329145206368075632092299, −0.65003661898249547726416191807,
0.65003661898249547726416191807, 1.38451329145206368075632092299, 2.28336673686736196236123221592, 2.72277723195492161686488945406, 3.26377989137007741662596899565, 3.80355985455103655387795748737, 4.46844863799473902557371302274, 4.75849421391656104550174883207, 5.26496608768409945141592593741, 5.77463337632978826572906432153, 6.32905911193264988381564486890, 6.50771235023982342244402809611, 7.10310581312335794207600971609, 7.44199546611001412152591514822, 8.086617533135571460878080127526