Properties

Label 4-1200e2-1.1-c1e2-0-13
Degree 44
Conductor 14400001440000
Sign 11
Analytic cond. 91.815691.8156
Root an. cond. 3.095483.09548
Motivic weight 11
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank 00

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 9-s + 16·29-s − 4·41-s + 10·49-s − 4·61-s + 81-s + 12·89-s + 12·109-s − 18·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s − 22·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + ⋯
L(s)  = 1  − 1/3·9-s + 2.97·29-s − 0.624·41-s + 10/7·49-s − 0.512·61-s + 1/9·81-s + 1.27·89-s + 1.14·109-s − 1.63·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s − 1.69·169-s + 0.0760·173-s + 0.0747·179-s + 0.0743·181-s + 0.0723·191-s + 0.0719·193-s + 0.0712·197-s + 0.0708·199-s + 0.0688·211-s + ⋯

Functional equation

Λ(s)=(1440000s/2ΓC(s)2L(s)=(Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut & 1440000 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}
Λ(s)=(1440000s/2ΓC(s+1/2)2L(s)=(Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 1440000 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}

Invariants

Degree: 44
Conductor: 14400001440000    =    2832542^{8} \cdot 3^{2} \cdot 5^{4}
Sign: 11
Analytic conductor: 91.815691.8156
Root analytic conductor: 3.095483.09548
Motivic weight: 11
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: 00
Selberg data: (4, 1440000, ( :1/2,1/2), 1)(4,\ 1440000,\ (\ :1/2, 1/2),\ 1)

Particular Values

L(1)L(1) \approx 2.0103749362.010374936
L(12)L(\frac12) \approx 2.0103749362.010374936
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppGal(Fp)\Gal(F_p)Fp(T)F_p(T)
bad2 1 1
3C2C_2 1+T2 1 + T^{2}
5 1 1
good7C22C_2^2 110T2+p2T4 1 - 10 T^{2} + p^{2} T^{4}
11C2C_2 (12T+pT2)(1+2T+pT2) ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} )
13C2C_2 (12T+pT2)(1+2T+pT2) ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} )
17C2C_2 (16T+pT2)(1+6T+pT2) ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} )
19C2C_2 (18T+pT2)(1+8T+pT2) ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} )
23C22C_2^2 130T2+p2T4 1 - 30 T^{2} + p^{2} T^{4}
29C2C_2 (18T+pT2)2 ( 1 - 8 T + p T^{2} )^{2}
31C2C_2 (1+pT2)2 ( 1 + p T^{2} )^{2}
37C2C_2 (110T+pT2)(1+10T+pT2) ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} )
41C2C_2 (1+2T+pT2)2 ( 1 + 2 T + p T^{2} )^{2}
43C22C_2^2 1+58T2+p2T4 1 + 58 T^{2} + p^{2} T^{4}
47C2C_2 (1pT2)2 ( 1 - p T^{2} )^{2}
53C2C_2 (110T+pT2)(1+10T+pT2) ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} )
59C2C_2 (16T+pT2)(1+6T+pT2) ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} )
61C2C_2 (1+2T+pT2)2 ( 1 + 2 T + p T^{2} )^{2}
67C22C_2^2 170T2+p2T4 1 - 70 T^{2} + p^{2} T^{4}
71C2C_2 (14T+pT2)(1+4T+pT2) ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} )
73C2C_2 (14T+pT2)(1+4T+pT2) ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} )
79C2C_2 (18T+pT2)(1+8T+pT2) ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} )
83C22C_2^2 1150T2+p2T4 1 - 150 T^{2} + p^{2} T^{4}
89C2C_2 (16T+pT2)2 ( 1 - 6 T + p T^{2} )^{2}
97C2C_2 (18T+pT2)(1+8T+pT2) ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} )
show more
show less
   L(s)=p j=14(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−8.086617533135571460878080127526, −7.44199546611001412152591514822, −7.10310581312335794207600971609, −6.50771235023982342244402809611, −6.32905911193264988381564486890, −5.77463337632978826572906432153, −5.26496608768409945141592593741, −4.75849421391656104550174883207, −4.46844863799473902557371302274, −3.80355985455103655387795748737, −3.26377989137007741662596899565, −2.72277723195492161686488945406, −2.28336673686736196236123221592, −1.38451329145206368075632092299, −0.65003661898249547726416191807, 0.65003661898249547726416191807, 1.38451329145206368075632092299, 2.28336673686736196236123221592, 2.72277723195492161686488945406, 3.26377989137007741662596899565, 3.80355985455103655387795748737, 4.46844863799473902557371302274, 4.75849421391656104550174883207, 5.26496608768409945141592593741, 5.77463337632978826572906432153, 6.32905911193264988381564486890, 6.50771235023982342244402809611, 7.10310581312335794207600971609, 7.44199546611001412152591514822, 8.086617533135571460878080127526

Graph of the ZZ-function along the critical line