Properties

Label 4-1200e2-1.1-c1e2-0-18
Degree $4$
Conductor $1440000$
Sign $1$
Analytic cond. $91.8156$
Root an. cond. $3.09548$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 9-s + 6·13-s + 2·17-s − 12·29-s − 10·37-s + 8·41-s + 10·49-s + 18·53-s + 12·61-s − 18·73-s + 81-s + 20·89-s + 6·97-s − 4·101-s + 4·109-s − 14·113-s + 6·117-s + 6·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 2·153-s + 157-s + 163-s + ⋯
L(s)  = 1  + 1/3·9-s + 1.66·13-s + 0.485·17-s − 2.22·29-s − 1.64·37-s + 1.24·41-s + 10/7·49-s + 2.47·53-s + 1.53·61-s − 2.10·73-s + 1/9·81-s + 2.11·89-s + 0.609·97-s − 0.398·101-s + 0.383·109-s − 1.31·113-s + 0.554·117-s + 6/11·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.161·153-s + 0.0798·157-s + 0.0783·163-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1440000 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1440000 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(1440000\)    =    \(2^{8} \cdot 3^{2} \cdot 5^{4}\)
Sign: $1$
Analytic conductor: \(91.8156\)
Root analytic conductor: \(3.09548\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 1440000,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.392915504\)
\(L(\frac12)\) \(\approx\) \(2.392915504\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_1$$\times$$C_1$ \( ( 1 - T )( 1 + T ) \)
5 \( 1 \)
good7$C_2^2$ \( 1 - 10 T^{2} + p^{2} T^{4} \)
11$C_2^2$ \( 1 - 6 T^{2} + p^{2} T^{4} \)
13$C_2$$\times$$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + p T^{2} ) \)
17$C_2$$\times$$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + p T^{2} ) \)
19$C_2^2$ \( 1 - 30 T^{2} + p^{2} T^{4} \)
23$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
29$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
31$C_2^2$ \( 1 - 50 T^{2} + p^{2} T^{4} \)
37$C_2$$\times$$C_2$ \( ( 1 + 2 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
41$C_2$$\times$$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 - 2 T + p T^{2} ) \)
43$C_2^2$ \( 1 - 50 T^{2} + p^{2} T^{4} \)
47$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
53$C_2$$\times$$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 - 6 T + p T^{2} ) \)
59$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
61$C_2$$\times$$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 - 2 T + p T^{2} ) \)
67$C_2^2$ \( 1 + 62 T^{2} + p^{2} T^{4} \)
71$C_2^2$ \( 1 + 2 T^{2} + p^{2} T^{4} \)
73$C_2$$\times$$C_2$ \( ( 1 + 4 T + p T^{2} )( 1 + 14 T + p T^{2} ) \)
79$C_2^2$ \( 1 + 138 T^{2} + p^{2} T^{4} \)
83$C_2^2$ \( 1 - 18 T^{2} + p^{2} T^{4} \)
89$C_2$$\times$$C_2$ \( ( 1 - 14 T + p T^{2} )( 1 - 6 T + p T^{2} ) \)
97$C_2$$\times$$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.83540487041894339635689883732, −7.41821810397637105155494485920, −7.19929019076115046584976214862, −6.66395544733240397854523548625, −6.10837574039395591018955960628, −5.66019988425805891741289162331, −5.50531724902698633695346568170, −4.88685525944060865041314880641, −4.06522363185768058926557610456, −3.83068347409164253221398360600, −3.55761953444439858212278594982, −2.72632634991445829166818625811, −2.07218279554419329920761833926, −1.46256558013774941495503677051, −0.71054314229633382874325179743, 0.71054314229633382874325179743, 1.46256558013774941495503677051, 2.07218279554419329920761833926, 2.72632634991445829166818625811, 3.55761953444439858212278594982, 3.83068347409164253221398360600, 4.06522363185768058926557610456, 4.88685525944060865041314880641, 5.50531724902698633695346568170, 5.66019988425805891741289162331, 6.10837574039395591018955960628, 6.66395544733240397854523548625, 7.19929019076115046584976214862, 7.41821810397637105155494485920, 7.83540487041894339635689883732

Graph of the $Z$-function along the critical line