L(s) = 1 | + 9-s + 6·13-s + 2·17-s − 12·29-s − 10·37-s + 8·41-s + 10·49-s + 18·53-s + 12·61-s − 18·73-s + 81-s + 20·89-s + 6·97-s − 4·101-s + 4·109-s − 14·113-s + 6·117-s + 6·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 2·153-s + 157-s + 163-s + ⋯ |
L(s) = 1 | + 1/3·9-s + 1.66·13-s + 0.485·17-s − 2.22·29-s − 1.64·37-s + 1.24·41-s + 10/7·49-s + 2.47·53-s + 1.53·61-s − 2.10·73-s + 1/9·81-s + 2.11·89-s + 0.609·97-s − 0.398·101-s + 0.383·109-s − 1.31·113-s + 0.554·117-s + 6/11·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.161·153-s + 0.0798·157-s + 0.0783·163-s + ⋯ |
Λ(s)=(=(1440000s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(1440000s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
1440000
= 28⋅32⋅54
|
Sign: |
1
|
Analytic conductor: |
91.8156 |
Root analytic conductor: |
3.09548 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
yes
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 1440000, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
2.392915504 |
L(21) |
≈ |
2.392915504 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | C1×C1 | (1−T)(1+T) |
| 5 | | 1 |
good | 7 | C22 | 1−10T2+p2T4 |
| 11 | C22 | 1−6T2+p2T4 |
| 13 | C2×C2 | (1−6T+pT2)(1+pT2) |
| 17 | C2×C2 | (1−2T+pT2)(1+pT2) |
| 19 | C22 | 1−30T2+p2T4 |
| 23 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 29 | C2 | (1+6T+pT2)2 |
| 31 | C22 | 1−50T2+p2T4 |
| 37 | C2×C2 | (1+2T+pT2)(1+8T+pT2) |
| 41 | C2×C2 | (1−6T+pT2)(1−2T+pT2) |
| 43 | C22 | 1−50T2+p2T4 |
| 47 | C2 | (1−8T+pT2)(1+8T+pT2) |
| 53 | C2×C2 | (1−12T+pT2)(1−6T+pT2) |
| 59 | C2 | (1−8T+pT2)(1+8T+pT2) |
| 61 | C2×C2 | (1−10T+pT2)(1−2T+pT2) |
| 67 | C22 | 1+62T2+p2T4 |
| 71 | C22 | 1+2T2+p2T4 |
| 73 | C2×C2 | (1+4T+pT2)(1+14T+pT2) |
| 79 | C22 | 1+138T2+p2T4 |
| 83 | C22 | 1−18T2+p2T4 |
| 89 | C2×C2 | (1−14T+pT2)(1−6T+pT2) |
| 97 | C2×C2 | (1−12T+pT2)(1+6T+pT2) |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.83540487041894339635689883732, −7.41821810397637105155494485920, −7.19929019076115046584976214862, −6.66395544733240397854523548625, −6.10837574039395591018955960628, −5.66019988425805891741289162331, −5.50531724902698633695346568170, −4.88685525944060865041314880641, −4.06522363185768058926557610456, −3.83068347409164253221398360600, −3.55761953444439858212278594982, −2.72632634991445829166818625811, −2.07218279554419329920761833926, −1.46256558013774941495503677051, −0.71054314229633382874325179743,
0.71054314229633382874325179743, 1.46256558013774941495503677051, 2.07218279554419329920761833926, 2.72632634991445829166818625811, 3.55761953444439858212278594982, 3.83068347409164253221398360600, 4.06522363185768058926557610456, 4.88685525944060865041314880641, 5.50531724902698633695346568170, 5.66019988425805891741289162331, 6.10837574039395591018955960628, 6.66395544733240397854523548625, 7.19929019076115046584976214862, 7.41821810397637105155494485920, 7.83540487041894339635689883732