L(s) = 1 | + 3·3-s + 6·9-s − 6·11-s − 4·13-s + 12·23-s + 9·27-s − 18·33-s + 16·37-s − 12·39-s − 12·47-s + 14·49-s − 24·59-s + 16·61-s + 36·69-s + 12·71-s + 2·73-s + 9·81-s − 18·83-s + 20·97-s − 36·99-s + 6·107-s − 16·109-s + 48·111-s − 24·117-s + 5·121-s + 127-s + 131-s + ⋯ |
L(s) = 1 | + 1.73·3-s + 2·9-s − 1.80·11-s − 1.10·13-s + 2.50·23-s + 1.73·27-s − 3.13·33-s + 2.63·37-s − 1.92·39-s − 1.75·47-s + 2·49-s − 3.12·59-s + 2.04·61-s + 4.33·69-s + 1.42·71-s + 0.234·73-s + 81-s − 1.97·83-s + 2.03·97-s − 3.61·99-s + 0.580·107-s − 1.53·109-s + 4.55·111-s − 2.21·117-s + 5/11·121-s + 0.0887·127-s + 0.0873·131-s + ⋯ |
Λ(s)=(=(1440000s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(1440000s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
1440000
= 28⋅32⋅54
|
Sign: |
1
|
Analytic conductor: |
91.8156 |
Root analytic conductor: |
3.09548 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 1440000, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
3.690799168 |
L(21) |
≈ |
3.690799168 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | C2 | 1−pT+pT2 |
| 5 | | 1 |
good | 7 | C2 | (1−pT2)2 |
| 11 | C2 | (1+3T+pT2)2 |
| 13 | C2 | (1+2T+pT2)2 |
| 17 | C22 | 1−7T2+p2T4 |
| 19 | C2 | (1−7T+pT2)(1+7T+pT2) |
| 23 | C2 | (1−6T+pT2)2 |
| 29 | C22 | 1+50T2+p2T4 |
| 31 | C22 | 1−50T2+p2T4 |
| 37 | C2 | (1−8T+pT2)2 |
| 41 | C22 | 1−55T2+p2T4 |
| 43 | C22 | 1−74T2+p2T4 |
| 47 | C2 | (1+6T+pT2)2 |
| 53 | C22 | 1+2T2+p2T4 |
| 59 | C2 | (1+12T+pT2)2 |
| 61 | C2 | (1−8T+pT2)2 |
| 67 | C2 | (1−11T+pT2)(1+11T+pT2) |
| 71 | C2 | (1−6T+pT2)2 |
| 73 | C2 | (1−T+pT2)2 |
| 79 | C22 | 1−110T2+p2T4 |
| 83 | C2 | (1+9T+pT2)2 |
| 89 | C22 | 1−151T2+p2T4 |
| 97 | C2 | (1−10T+pT2)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.949071215160877709405285288689, −9.388712944607297374453685683482, −9.148258902572960841846009259247, −8.807714535280942665412841301694, −8.255774497202089660090663603470, −7.77666664841938190662447383816, −7.71661740425551270066394270788, −7.34009431470494632789417767851, −6.77560219337028756121239169548, −6.40687562695412033412906492299, −5.54815261604095958672505092947, −5.18343743253181781866862967579, −4.76447631261619758628405568919, −4.34226208320684842695419885883, −3.71331411593505908329064024068, −2.88253801903961845956274903295, −2.85753585158968917578674971710, −2.48302961494227328366943154877, −1.70698974645208637812633518352, −0.73878341732076462904245968158,
0.73878341732076462904245968158, 1.70698974645208637812633518352, 2.48302961494227328366943154877, 2.85753585158968917578674971710, 2.88253801903961845956274903295, 3.71331411593505908329064024068, 4.34226208320684842695419885883, 4.76447631261619758628405568919, 5.18343743253181781866862967579, 5.54815261604095958672505092947, 6.40687562695412033412906492299, 6.77560219337028756121239169548, 7.34009431470494632789417767851, 7.71661740425551270066394270788, 7.77666664841938190662447383816, 8.255774497202089660090663603470, 8.807714535280942665412841301694, 9.148258902572960841846009259247, 9.388712944607297374453685683482, 9.949071215160877709405285288689