L(s) = 1 | − 3·3-s + 6·9-s − 6·11-s + 4·13-s − 12·23-s − 9·27-s + 18·33-s − 16·37-s − 12·39-s + 12·47-s + 14·49-s − 24·59-s + 16·61-s + 36·69-s + 12·71-s − 2·73-s + 9·81-s + 18·83-s − 20·97-s − 36·99-s − 6·107-s − 16·109-s + 48·111-s + 24·117-s + 5·121-s + 127-s + 131-s + ⋯ |
L(s) = 1 | − 1.73·3-s + 2·9-s − 1.80·11-s + 1.10·13-s − 2.50·23-s − 1.73·27-s + 3.13·33-s − 2.63·37-s − 1.92·39-s + 1.75·47-s + 2·49-s − 3.12·59-s + 2.04·61-s + 4.33·69-s + 1.42·71-s − 0.234·73-s + 81-s + 1.97·83-s − 2.03·97-s − 3.61·99-s − 0.580·107-s − 1.53·109-s + 4.55·111-s + 2.21·117-s + 5/11·121-s + 0.0887·127-s + 0.0873·131-s + ⋯ |
Λ(s)=(=(1440000s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(1440000s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
1440000
= 28⋅32⋅54
|
Sign: |
1
|
Analytic conductor: |
91.8156 |
Root analytic conductor: |
3.09548 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 1440000, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
0.3766121600 |
L(21) |
≈ |
0.3766121600 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | C2 | 1+pT+pT2 |
| 5 | | 1 |
good | 7 | C2 | (1−pT2)2 |
| 11 | C2 | (1+3T+pT2)2 |
| 13 | C2 | (1−2T+pT2)2 |
| 17 | C22 | 1−7T2+p2T4 |
| 19 | C2 | (1−7T+pT2)(1+7T+pT2) |
| 23 | C2 | (1+6T+pT2)2 |
| 29 | C22 | 1+50T2+p2T4 |
| 31 | C22 | 1−50T2+p2T4 |
| 37 | C2 | (1+8T+pT2)2 |
| 41 | C22 | 1−55T2+p2T4 |
| 43 | C22 | 1−74T2+p2T4 |
| 47 | C2 | (1−6T+pT2)2 |
| 53 | C22 | 1+2T2+p2T4 |
| 59 | C2 | (1+12T+pT2)2 |
| 61 | C2 | (1−8T+pT2)2 |
| 67 | C2 | (1−11T+pT2)(1+11T+pT2) |
| 71 | C2 | (1−6T+pT2)2 |
| 73 | C2 | (1+T+pT2)2 |
| 79 | C22 | 1−110T2+p2T4 |
| 83 | C2 | (1−9T+pT2)2 |
| 89 | C22 | 1−151T2+p2T4 |
| 97 | C2 | (1+10T+pT2)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.24241117420089599362030237578, −9.735622760464094679804352445585, −9.160218818393113271881260638511, −8.764439734700187667739256783256, −8.082374327393994916182205016028, −7.960837988361317902228831190964, −7.48843416880746156683661506366, −6.89091377387839359008903746689, −6.59947152126265751554091188917, −6.04781706637437252987046953342, −5.68392438476744828821678133760, −5.38130014074993360084710856524, −5.10645051458956556813116411809, −4.37457029886652802141706842065, −3.93615750866165581470282315462, −3.56055383961580793173395611144, −2.58519152879164453411555551623, −2.06033238712800569075589944275, −1.29936585137234847375855601110, −0.30969000246082014815069030507,
0.30969000246082014815069030507, 1.29936585137234847375855601110, 2.06033238712800569075589944275, 2.58519152879164453411555551623, 3.56055383961580793173395611144, 3.93615750866165581470282315462, 4.37457029886652802141706842065, 5.10645051458956556813116411809, 5.38130014074993360084710856524, 5.68392438476744828821678133760, 6.04781706637437252987046953342, 6.59947152126265751554091188917, 6.89091377387839359008903746689, 7.48843416880746156683661506366, 7.960837988361317902228831190964, 8.082374327393994916182205016028, 8.764439734700187667739256783256, 9.160218818393113271881260638511, 9.735622760464094679804352445585, 10.24241117420089599362030237578