Properties

Label 4-1200e2-1.1-c1e2-0-4
Degree 44
Conductor 14400001440000
Sign 11
Analytic cond. 91.815691.8156
Root an. cond. 3.095483.09548
Motivic weight 11
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank 00

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 9-s − 4·13-s − 4·17-s − 4·29-s − 4·37-s − 4·41-s − 2·49-s − 20·53-s + 20·61-s − 4·73-s + 81-s − 12·89-s − 4·97-s − 4·101-s + 20·109-s − 4·113-s + 4·117-s + 10·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 4·153-s + 157-s + 163-s + ⋯
L(s)  = 1  − 1/3·9-s − 1.10·13-s − 0.970·17-s − 0.742·29-s − 0.657·37-s − 0.624·41-s − 2/7·49-s − 2.74·53-s + 2.56·61-s − 0.468·73-s + 1/9·81-s − 1.27·89-s − 0.406·97-s − 0.398·101-s + 1.91·109-s − 0.376·113-s + 0.369·117-s + 0.909·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.323·153-s + 0.0798·157-s + 0.0783·163-s + ⋯

Functional equation

Λ(s)=(1440000s/2ΓC(s)2L(s)=(Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut & 1440000 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}
Λ(s)=(1440000s/2ΓC(s+1/2)2L(s)=(Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 1440000 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}

Invariants

Degree: 44
Conductor: 14400001440000    =    2832542^{8} \cdot 3^{2} \cdot 5^{4}
Sign: 11
Analytic conductor: 91.815691.8156
Root analytic conductor: 3.095483.09548
Motivic weight: 11
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: 00
Selberg data: (4, 1440000, ( :1/2,1/2), 1)(4,\ 1440000,\ (\ :1/2, 1/2),\ 1)

Particular Values

L(1)L(1) \approx 0.95903325470.9590332547
L(12)L(\frac12) \approx 0.95903325470.9590332547
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppGal(Fp)\Gal(F_p)Fp(T)F_p(T)
bad2 1 1
3C2C_2 1+T2 1 + T^{2}
5 1 1
good7C22C_2^2 1+2T2+p2T4 1 + 2 T^{2} + p^{2} T^{4}
11C22C_2^2 110T2+p2T4 1 - 10 T^{2} + p^{2} T^{4}
13C2C_2×\timesC2C_2 (12T+pT2)(1+6T+pT2) ( 1 - 2 T + p T^{2} )( 1 + 6 T + p T^{2} )
17C2C_2×\timesC2C_2 (12T+pT2)(1+6T+pT2) ( 1 - 2 T + p T^{2} )( 1 + 6 T + p T^{2} )
19C2C_2 (18T+pT2)(1+8T+pT2) ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} )
23C22C_2^2 1+2T2+p2T4 1 + 2 T^{2} + p^{2} T^{4}
29C2C_2×\timesC2C_2 (16T+pT2)(1+10T+pT2) ( 1 - 6 T + p T^{2} )( 1 + 10 T + p T^{2} )
31C2C_2 (18T+pT2)(1+8T+pT2) ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} )
37C2C_2×\timesC2C_2 (12T+pT2)(1+6T+pT2) ( 1 - 2 T + p T^{2} )( 1 + 6 T + p T^{2} )
41C2C_2×\timesC2C_2 (16T+pT2)(1+10T+pT2) ( 1 - 6 T + p T^{2} )( 1 + 10 T + p T^{2} )
43C22C_2^2 16T2+p2T4 1 - 6 T^{2} + p^{2} T^{4}
47C22C_2^2 1+50T2+p2T4 1 + 50 T^{2} + p^{2} T^{4}
53C2C_2 (1+10T+pT2)2 ( 1 + 10 T + p T^{2} )^{2}
59C2C_2 (112T+pT2)(1+12T+pT2) ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} )
61C2C_2 (110T+pT2)2 ( 1 - 10 T + p T^{2} )^{2}
67C22C_2^2 1+74T2+p2T4 1 + 74 T^{2} + p^{2} T^{4}
71C22C_2^2 198T2+p2T4 1 - 98 T^{2} + p^{2} T^{4}
73C2C_2 (1+2T+pT2)2 ( 1 + 2 T + p T^{2} )^{2}
79C22C_2^2 1+78T2+p2T4 1 + 78 T^{2} + p^{2} T^{4}
83C22C_2^2 1+138T2+p2T4 1 + 138 T^{2} + p^{2} T^{4}
89C2C_2×\timesC2C_2 (12T+pT2)(1+14T+pT2) ( 1 - 2 T + p T^{2} )( 1 + 14 T + p T^{2} )
97C2C_2×\timesC2C_2 (16T+pT2)(1+10T+pT2) ( 1 - 6 T + p T^{2} )( 1 + 10 T + p T^{2} )
show more
show less
   L(s)=p j=14(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−7.940008265306879861413585970207, −7.48216169005357601891931186210, −6.94683872481775010371033062640, −6.81299521346588539844008212499, −6.20016235849268311488128862379, −5.74066571704584598819260845848, −5.21804950769974743245279784521, −4.86621900672163067926540935570, −4.40287542019195264973117638002, −3.84523130497835503037903531897, −3.24329786235595835823119880222, −2.76943987037978476355348583032, −2.09578520873103459297380339412, −1.64886819919402137737432283320, −0.40368900711329946378588854971, 0.40368900711329946378588854971, 1.64886819919402137737432283320, 2.09578520873103459297380339412, 2.76943987037978476355348583032, 3.24329786235595835823119880222, 3.84523130497835503037903531897, 4.40287542019195264973117638002, 4.86621900672163067926540935570, 5.21804950769974743245279784521, 5.74066571704584598819260845848, 6.20016235849268311488128862379, 6.81299521346588539844008212499, 6.94683872481775010371033062640, 7.48216169005357601891931186210, 7.940008265306879861413585970207

Graph of the ZZ-function along the critical line