L(s) = 1 | − 9-s − 4·13-s − 4·17-s − 4·29-s − 4·37-s − 4·41-s − 2·49-s − 20·53-s + 20·61-s − 4·73-s + 81-s − 12·89-s − 4·97-s − 4·101-s + 20·109-s − 4·113-s + 4·117-s + 10·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 4·153-s + 157-s + 163-s + ⋯ |
L(s) = 1 | − 1/3·9-s − 1.10·13-s − 0.970·17-s − 0.742·29-s − 0.657·37-s − 0.624·41-s − 2/7·49-s − 2.74·53-s + 2.56·61-s − 0.468·73-s + 1/9·81-s − 1.27·89-s − 0.406·97-s − 0.398·101-s + 1.91·109-s − 0.376·113-s + 0.369·117-s + 0.909·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.323·153-s + 0.0798·157-s + 0.0783·163-s + ⋯ |
Λ(s)=(=(1440000s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(1440000s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
1440000
= 28⋅32⋅54
|
Sign: |
1
|
Analytic conductor: |
91.8156 |
Root analytic conductor: |
3.09548 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
yes
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 1440000, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
0.9590332547 |
L(21) |
≈ |
0.9590332547 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | C2 | 1+T2 |
| 5 | | 1 |
good | 7 | C22 | 1+2T2+p2T4 |
| 11 | C22 | 1−10T2+p2T4 |
| 13 | C2×C2 | (1−2T+pT2)(1+6T+pT2) |
| 17 | C2×C2 | (1−2T+pT2)(1+6T+pT2) |
| 19 | C2 | (1−8T+pT2)(1+8T+pT2) |
| 23 | C22 | 1+2T2+p2T4 |
| 29 | C2×C2 | (1−6T+pT2)(1+10T+pT2) |
| 31 | C2 | (1−8T+pT2)(1+8T+pT2) |
| 37 | C2×C2 | (1−2T+pT2)(1+6T+pT2) |
| 41 | C2×C2 | (1−6T+pT2)(1+10T+pT2) |
| 43 | C22 | 1−6T2+p2T4 |
| 47 | C22 | 1+50T2+p2T4 |
| 53 | C2 | (1+10T+pT2)2 |
| 59 | C2 | (1−12T+pT2)(1+12T+pT2) |
| 61 | C2 | (1−10T+pT2)2 |
| 67 | C22 | 1+74T2+p2T4 |
| 71 | C22 | 1−98T2+p2T4 |
| 73 | C2 | (1+2T+pT2)2 |
| 79 | C22 | 1+78T2+p2T4 |
| 83 | C22 | 1+138T2+p2T4 |
| 89 | C2×C2 | (1−2T+pT2)(1+14T+pT2) |
| 97 | C2×C2 | (1−6T+pT2)(1+10T+pT2) |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.940008265306879861413585970207, −7.48216169005357601891931186210, −6.94683872481775010371033062640, −6.81299521346588539844008212499, −6.20016235849268311488128862379, −5.74066571704584598819260845848, −5.21804950769974743245279784521, −4.86621900672163067926540935570, −4.40287542019195264973117638002, −3.84523130497835503037903531897, −3.24329786235595835823119880222, −2.76943987037978476355348583032, −2.09578520873103459297380339412, −1.64886819919402137737432283320, −0.40368900711329946378588854971,
0.40368900711329946378588854971, 1.64886819919402137737432283320, 2.09578520873103459297380339412, 2.76943987037978476355348583032, 3.24329786235595835823119880222, 3.84523130497835503037903531897, 4.40287542019195264973117638002, 4.86621900672163067926540935570, 5.21804950769974743245279784521, 5.74066571704584598819260845848, 6.20016235849268311488128862379, 6.81299521346588539844008212499, 6.94683872481775010371033062640, 7.48216169005357601891931186210, 7.940008265306879861413585970207