L(s) = 1 | − 3·9-s + 12·13-s − 36·17-s − 56·29-s − 60·37-s + 4·41-s + 86·49-s − 204·53-s − 148·61-s − 264·73-s + 9·81-s + 28·89-s − 48·97-s − 40·101-s + 172·109-s − 252·113-s − 36·117-s + 230·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 108·153-s + 157-s + 163-s + ⋯ |
L(s) = 1 | − 1/3·9-s + 0.923·13-s − 2.11·17-s − 1.93·29-s − 1.62·37-s + 4/41·41-s + 1.75·49-s − 3.84·53-s − 2.42·61-s − 3.61·73-s + 1/9·81-s + 0.314·89-s − 0.494·97-s − 0.396·101-s + 1.57·109-s − 2.23·113-s − 0.307·117-s + 1.90·121-s + 0.00787·127-s + 0.00763·131-s + 0.00729·137-s + 0.00719·139-s + 0.00671·149-s + 0.00662·151-s + 0.705·153-s + 0.00636·157-s + 0.00613·163-s + ⋯ |
Λ(s)=(=(1440000s/2ΓC(s)2L(s)Λ(3−s)
Λ(s)=(=(1440000s/2ΓC(s+1)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
1440000
= 28⋅32⋅54
|
Sign: |
1
|
Analytic conductor: |
1069.13 |
Root analytic conductor: |
5.71818 |
Motivic weight: |
2 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 1440000, ( :1,1), 1)
|
Particular Values
L(23) |
≈ |
0.01085902613 |
L(21) |
≈ |
0.01085902613 |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | C2 | 1+pT2 |
| 5 | | 1 |
good | 7 | C22 | 1−86T2+p4T4 |
| 11 | C22 | 1−230T2+p4T4 |
| 13 | C2 | (1−6T+p2T2)2 |
| 17 | C2 | (1+18T+p2T2)2 |
| 19 | C22 | 1−530T2+p4T4 |
| 23 | C22 | 1−1010T2+p4T4 |
| 29 | C2 | (1+28T+p2T2)2 |
| 31 | C22 | 1+430T2+p4T4 |
| 37 | C2 | (1+30T+p2T2)2 |
| 41 | C2 | (1−2T+p2T2)2 |
| 43 | C22 | 1+190T2+p4T4 |
| 47 | C22 | 1−1346T2+p4T4 |
| 53 | C2 | (1+102T+p2T2)2 |
| 59 | C22 | 1+3130T2+p4T4 |
| 61 | C2 | (1+74T+p2T2)2 |
| 67 | C22 | 1+430T2+p4T4 |
| 71 | C22 | 1−10034T2+p4T4 |
| 73 | C2 | (1+132T+p2T2)2 |
| 79 | C22 | 1−1682T2+p4T4 |
| 83 | C22 | 1+94T2+p4T4 |
| 89 | C2 | (1−14T+p2T2)2 |
| 97 | C2 | (1+24T+p2T2)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.716018936452984202390891814254, −9.045492322141150931408124317744, −8.989618646708631818833942500363, −8.782253626936753878170281264989, −8.190557119119297016984229695489, −7.55994306026124732453743996103, −7.43623616154388132538336921207, −6.83767705572325181423463983435, −6.36640512535190446898946115511, −5.98583209974019983062895041069, −5.74519278107940721781054856408, −4.81696726017546119962620155191, −4.80584202155084393737432738159, −4.02103559248388976424761877455, −3.70758625064693816471739048699, −3.04519113977483184084028260975, −2.56292298281281345009573820355, −1.68828380870196673499368885279, −1.53169448199448096316653308641, −0.02942861356119341813152622712,
0.02942861356119341813152622712, 1.53169448199448096316653308641, 1.68828380870196673499368885279, 2.56292298281281345009573820355, 3.04519113977483184084028260975, 3.70758625064693816471739048699, 4.02103559248388976424761877455, 4.80584202155084393737432738159, 4.81696726017546119962620155191, 5.74519278107940721781054856408, 5.98583209974019983062895041069, 6.36640512535190446898946115511, 6.83767705572325181423463983435, 7.43623616154388132538336921207, 7.55994306026124732453743996103, 8.190557119119297016984229695489, 8.782253626936753878170281264989, 8.989618646708631818833942500363, 9.045492322141150931408124317744, 9.716018936452984202390891814254