L(s) = 1 | + 2·3-s + 14·7-s − 5·9-s − 50·13-s + 14·19-s + 28·21-s − 28·27-s + 14·31-s + 4·37-s − 100·39-s − 82·43-s + 49·49-s + 28·57-s − 2·61-s − 70·63-s − 34·67-s − 140·73-s + 116·79-s − 11·81-s − 700·91-s + 28·93-s − 98·97-s + 308·103-s − 50·109-s + 8·111-s + 250·117-s + 170·121-s + ⋯ |
L(s) = 1 | + 2/3·3-s + 2·7-s − 5/9·9-s − 3.84·13-s + 0.736·19-s + 4/3·21-s − 1.03·27-s + 0.451·31-s + 4/37·37-s − 2.56·39-s − 1.90·43-s + 49-s + 0.491·57-s − 0.0327·61-s − 1.11·63-s − 0.507·67-s − 1.91·73-s + 1.46·79-s − 0.135·81-s − 7.69·91-s + 0.301·93-s − 1.01·97-s + 2.99·103-s − 0.458·109-s + 0.0720·111-s + 2.13·117-s + 1.40·121-s + ⋯ |
Λ(s)=(=(1440000s/2ΓC(s)2L(s)Λ(3−s)
Λ(s)=(=(1440000s/2ΓC(s+1)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
1440000
= 28⋅32⋅54
|
Sign: |
1
|
Analytic conductor: |
1069.13 |
Root analytic conductor: |
5.71818 |
Motivic weight: |
2 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 1440000, ( :1,1), 1)
|
Particular Values
L(23) |
≈ |
1.745635425 |
L(21) |
≈ |
1.745635425 |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | C2 | 1−2T+p2T2 |
| 5 | | 1 |
good | 7 | C2 | (1−pT+p2T2)2 |
| 11 | C22 | 1−170T2+p4T4 |
| 13 | C2 | (1+25T+p2T2)2 |
| 17 | C22 | 1+70T2+p4T4 |
| 19 | C2 | (1−7T+p2T2)2 |
| 23 | C22 | 1−410T2+p4T4 |
| 29 | C22 | 1+118T2+p4T4 |
| 31 | C2 | (1−7T+p2T2)2 |
| 37 | C2 | (1−2T+p2T2)2 |
| 41 | C22 | 1−3290T2+p4T4 |
| 43 | C2 | (1+41T+p2T2)2 |
| 47 | C1×C1 | (1−pT)2(1+pT)2 |
| 53 | C22 | 1−2090T2+p4T4 |
| 59 | C22 | 1−5810T2+p4T4 |
| 61 | C2 | (1+T+p2T2)2 |
| 67 | C2 | (1+17T+p2T2)2 |
| 71 | C22 | 1−8282T2+p4T4 |
| 73 | C2 | (1+70T+p2T2)2 |
| 79 | C2 | (1−58T+p2T2)2 |
| 83 | C22 | 1+334T2+p4T4 |
| 89 | C22 | 1+2590T2+p4T4 |
| 97 | C2 | (1+49T+p2T2)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.654369544641867486065104388231, −9.555105942634100894442716820632, −8.757383274047098096649485132603, −8.594702413198485034848673343216, −7.902510608314406486550306029786, −7.86690159070136632162818382135, −7.42847093444129848156348725171, −7.12138683347527511915717219109, −6.62009533280546283297034795974, −5.74585019278562682775698971892, −5.42038965846699785731010433713, −4.86385638206789412012123959107, −4.71447875438696003659017012855, −4.46878811052058189696630149089, −3.38616780169582751190589176500, −3.02377698141610002159515607062, −2.29869132523221975749581522045, −2.14737934543105428712629867665, −1.46759905849771493921514604054, −0.35354229502205263785839925885,
0.35354229502205263785839925885, 1.46759905849771493921514604054, 2.14737934543105428712629867665, 2.29869132523221975749581522045, 3.02377698141610002159515607062, 3.38616780169582751190589176500, 4.46878811052058189696630149089, 4.71447875438696003659017012855, 4.86385638206789412012123959107, 5.42038965846699785731010433713, 5.74585019278562682775698971892, 6.62009533280546283297034795974, 7.12138683347527511915717219109, 7.42847093444129848156348725171, 7.86690159070136632162818382135, 7.902510608314406486550306029786, 8.594702413198485034848673343216, 8.757383274047098096649485132603, 9.555105942634100894442716820632, 9.654369544641867486065104388231