Properties

Label 4-1200e2-1.1-c2e2-0-11
Degree $4$
Conductor $1440000$
Sign $1$
Analytic cond. $1069.13$
Root an. cond. $5.71818$
Motivic weight $2$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·3-s + 14·7-s − 5·9-s − 50·13-s + 14·19-s + 28·21-s − 28·27-s + 14·31-s + 4·37-s − 100·39-s − 82·43-s + 49·49-s + 28·57-s − 2·61-s − 70·63-s − 34·67-s − 140·73-s + 116·79-s − 11·81-s − 700·91-s + 28·93-s − 98·97-s + 308·103-s − 50·109-s + 8·111-s + 250·117-s + 170·121-s + ⋯
L(s)  = 1  + 2/3·3-s + 2·7-s − 5/9·9-s − 3.84·13-s + 0.736·19-s + 4/3·21-s − 1.03·27-s + 0.451·31-s + 4/37·37-s − 2.56·39-s − 1.90·43-s + 49-s + 0.491·57-s − 0.0327·61-s − 1.11·63-s − 0.507·67-s − 1.91·73-s + 1.46·79-s − 0.135·81-s − 7.69·91-s + 0.301·93-s − 1.01·97-s + 2.99·103-s − 0.458·109-s + 0.0720·111-s + 2.13·117-s + 1.40·121-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1440000 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1440000 ^{s/2} \, \Gamma_{\C}(s+1)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(1440000\)    =    \(2^{8} \cdot 3^{2} \cdot 5^{4}\)
Sign: $1$
Analytic conductor: \(1069.13\)
Root analytic conductor: \(5.71818\)
Motivic weight: \(2\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 1440000,\ (\ :1, 1),\ 1)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(1.745635425\)
\(L(\frac12)\) \(\approx\) \(1.745635425\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_2$ \( 1 - 2 T + p^{2} T^{2} \)
5 \( 1 \)
good7$C_2$ \( ( 1 - p T + p^{2} T^{2} )^{2} \)
11$C_2^2$ \( 1 - 170 T^{2} + p^{4} T^{4} \)
13$C_2$ \( ( 1 + 25 T + p^{2} T^{2} )^{2} \)
17$C_2^2$ \( 1 + 70 T^{2} + p^{4} T^{4} \)
19$C_2$ \( ( 1 - 7 T + p^{2} T^{2} )^{2} \)
23$C_2^2$ \( 1 - 410 T^{2} + p^{4} T^{4} \)
29$C_2^2$ \( 1 + 118 T^{2} + p^{4} T^{4} \)
31$C_2$ \( ( 1 - 7 T + p^{2} T^{2} )^{2} \)
37$C_2$ \( ( 1 - 2 T + p^{2} T^{2} )^{2} \)
41$C_2^2$ \( 1 - 3290 T^{2} + p^{4} T^{4} \)
43$C_2$ \( ( 1 + 41 T + p^{2} T^{2} )^{2} \)
47$C_1$$\times$$C_1$ \( ( 1 - p T )^{2}( 1 + p T )^{2} \)
53$C_2^2$ \( 1 - 2090 T^{2} + p^{4} T^{4} \)
59$C_2^2$ \( 1 - 5810 T^{2} + p^{4} T^{4} \)
61$C_2$ \( ( 1 + T + p^{2} T^{2} )^{2} \)
67$C_2$ \( ( 1 + 17 T + p^{2} T^{2} )^{2} \)
71$C_2^2$ \( 1 - 8282 T^{2} + p^{4} T^{4} \)
73$C_2$ \( ( 1 + 70 T + p^{2} T^{2} )^{2} \)
79$C_2$ \( ( 1 - 58 T + p^{2} T^{2} )^{2} \)
83$C_2^2$ \( 1 + 334 T^{2} + p^{4} T^{4} \)
89$C_2^2$ \( 1 + 2590 T^{2} + p^{4} T^{4} \)
97$C_2$ \( ( 1 + 49 T + p^{2} T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.654369544641867486065104388231, −9.555105942634100894442716820632, −8.757383274047098096649485132603, −8.594702413198485034848673343216, −7.902510608314406486550306029786, −7.86690159070136632162818382135, −7.42847093444129848156348725171, −7.12138683347527511915717219109, −6.62009533280546283297034795974, −5.74585019278562682775698971892, −5.42038965846699785731010433713, −4.86385638206789412012123959107, −4.71447875438696003659017012855, −4.46878811052058189696630149089, −3.38616780169582751190589176500, −3.02377698141610002159515607062, −2.29869132523221975749581522045, −2.14737934543105428712629867665, −1.46759905849771493921514604054, −0.35354229502205263785839925885, 0.35354229502205263785839925885, 1.46759905849771493921514604054, 2.14737934543105428712629867665, 2.29869132523221975749581522045, 3.02377698141610002159515607062, 3.38616780169582751190589176500, 4.46878811052058189696630149089, 4.71447875438696003659017012855, 4.86385638206789412012123959107, 5.42038965846699785731010433713, 5.74585019278562682775698971892, 6.62009533280546283297034795974, 7.12138683347527511915717219109, 7.42847093444129848156348725171, 7.86690159070136632162818382135, 7.902510608314406486550306029786, 8.594702413198485034848673343216, 8.757383274047098096649485132603, 9.555105942634100894442716820632, 9.654369544641867486065104388231

Graph of the $Z$-function along the critical line