L(s) = 1 | + 2·5-s − 2·9-s + 8·13-s − 6·17-s − 7·25-s + 4·29-s − 20·37-s + 20·41-s − 4·45-s − 5·49-s + 8·53-s + 26·61-s + 16·65-s + 18·73-s − 5·81-s − 12·85-s + 24·89-s − 16·97-s + 20·101-s − 20·113-s − 16·117-s + 3·121-s − 26·125-s + 127-s + 131-s + 137-s + 139-s + ⋯ |
L(s) = 1 | + 0.894·5-s − 2/3·9-s + 2.21·13-s − 1.45·17-s − 7/5·25-s + 0.742·29-s − 3.28·37-s + 3.12·41-s − 0.596·45-s − 5/7·49-s + 1.09·53-s + 3.32·61-s + 1.98·65-s + 2.10·73-s − 5/9·81-s − 1.30·85-s + 2.54·89-s − 1.62·97-s + 1.99·101-s − 1.88·113-s − 1.47·117-s + 3/11·121-s − 2.32·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + ⋯ |
Λ(s)=(=(1478656s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(1478656s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
1478656
= 212⋅192
|
Sign: |
1
|
Analytic conductor: |
94.2803 |
Root analytic conductor: |
3.11605 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 1478656, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
2.415391886 |
L(21) |
≈ |
2.415391886 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 19 | C1×C1 | (1−T)(1+T) |
good | 3 | C2 | (1−2T+pT2)(1+2T+pT2) |
| 5 | C2 | (1−T+pT2)2 |
| 7 | C2 | (1−3T+pT2)(1+3T+pT2) |
| 11 | C2 | (1−5T+pT2)(1+5T+pT2) |
| 13 | C2 | (1−4T+pT2)2 |
| 17 | C2 | (1+3T+pT2)2 |
| 23 | C2 | (1−8T+pT2)(1+8T+pT2) |
| 29 | C2 | (1−2T+pT2)2 |
| 31 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 37 | C2 | (1+10T+pT2)2 |
| 41 | C2 | (1−10T+pT2)2 |
| 43 | C2 | (1−T+pT2)(1+T+pT2) |
| 47 | C2 | (1−T+pT2)(1+T+pT2) |
| 53 | C2 | (1−4T+pT2)2 |
| 59 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 61 | C2 | (1−13T+pT2)2 |
| 67 | C2 | (1−12T+pT2)(1+12T+pT2) |
| 71 | C2 | (1−2T+pT2)(1+2T+pT2) |
| 73 | C2 | (1−9T+pT2)2 |
| 79 | C2 | (1−8T+pT2)(1+8T+pT2) |
| 83 | C2 | (1−12T+pT2)(1+12T+pT2) |
| 89 | C2 | (1−12T+pT2)2 |
| 97 | C2 | (1+8T+pT2)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.121865683855346250917871835791, −7.46802549489449929304458830547, −6.89999375237673531400272497166, −6.39486340421971046323119110374, −6.35171638937504994192666881666, −5.61135260065455155907566257543, −5.55162300458149510222680140561, −4.93085486739421392203871722376, −4.17947794613570531538770424508, −3.73571330395388729025783799541, −3.51647821375355615052320307776, −2.48496537170117614857619865014, −2.22354879090908877160738042469, −1.55214010532178794455093749689, −0.67525660115678139253233977173,
0.67525660115678139253233977173, 1.55214010532178794455093749689, 2.22354879090908877160738042469, 2.48496537170117614857619865014, 3.51647821375355615052320307776, 3.73571330395388729025783799541, 4.17947794613570531538770424508, 4.93085486739421392203871722376, 5.55162300458149510222680140561, 5.61135260065455155907566257543, 6.35171638937504994192666881666, 6.39486340421971046323119110374, 6.89999375237673531400272497166, 7.46802549489449929304458830547, 8.121865683855346250917871835791