L(s) = 1 | + 6·9-s − 4·11-s − 12·19-s − 5·25-s − 4·41-s − 6·49-s + 28·59-s + 27·81-s + 28·89-s − 24·99-s − 10·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 6·169-s − 72·171-s + 173-s + 179-s + 181-s + 191-s + 193-s + ⋯ |
L(s) = 1 | + 2·9-s − 1.20·11-s − 2.75·19-s − 25-s − 0.624·41-s − 6/7·49-s + 3.64·59-s + 3·81-s + 2.96·89-s − 2.41·99-s − 0.909·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 6/13·169-s − 5.50·171-s + 0.0760·173-s + 0.0747·179-s + 0.0743·181-s + 0.0723·191-s + 0.0719·193-s + ⋯ |
Λ(s)=(=(1638400s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(1638400s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
1638400
= 216⋅52
|
Sign: |
1
|
Analytic conductor: |
104.465 |
Root analytic conductor: |
3.19700 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 1638400, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
1.646847634 |
L(21) |
≈ |
1.646847634 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 5 | C2 | 1+pT2 |
good | 3 | C2 | (1−pT2)2 |
| 7 | C22 | 1+6T2+p2T4 |
| 11 | C2 | (1+2T+pT2)2 |
| 13 | C22 | 1−6T2+p2T4 |
| 17 | C2 | (1−pT2)2 |
| 19 | C2 | (1+6T+pT2)2 |
| 23 | C22 | 1−26T2+p2T4 |
| 29 | C2 | (1+pT2)2 |
| 31 | C2 | (1+pT2)2 |
| 37 | C22 | 1−54T2+p2T4 |
| 41 | C2 | (1+2T+pT2)2 |
| 43 | C2 | (1−pT2)2 |
| 47 | C22 | 1+86T2+p2T4 |
| 53 | C22 | 1+74T2+p2T4 |
| 59 | C2 | (1−14T+pT2)2 |
| 61 | C2 | (1+pT2)2 |
| 67 | C2 | (1−pT2)2 |
| 71 | C2 | (1+pT2)2 |
| 73 | C2 | (1−pT2)2 |
| 79 | C2 | (1+pT2)2 |
| 83 | C2 | (1−pT2)2 |
| 89 | C2 | (1−14T+pT2)2 |
| 97 | C2 | (1−pT2)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.01189834274754399308534160477, −9.508218434809640462552057689155, −9.154939644273593689723852753604, −8.416304929789343801293118197581, −8.389866350791385063712407009806, −7.74592460986006238385529971400, −7.55725113131992085501945558784, −6.93648865182708136909338145864, −6.51323186750480796166338039502, −6.42293634005169415510828363066, −5.64325386138238628445848631646, −5.13170956332301373270710468705, −4.78717868140838772970687718482, −4.12362414051404373152275425894, −4.02991545464335586041913743014, −3.42512443476988478287900229256, −2.43094823568408556388572935045, −2.15052945118002727801548050054, −1.61534907303435197837576917532, −0.52902945122450277243009553487,
0.52902945122450277243009553487, 1.61534907303435197837576917532, 2.15052945118002727801548050054, 2.43094823568408556388572935045, 3.42512443476988478287900229256, 4.02991545464335586041913743014, 4.12362414051404373152275425894, 4.78717868140838772970687718482, 5.13170956332301373270710468705, 5.64325386138238628445848631646, 6.42293634005169415510828363066, 6.51323186750480796166338039502, 6.93648865182708136909338145864, 7.55725113131992085501945558784, 7.74592460986006238385529971400, 8.389866350791385063712407009806, 8.416304929789343801293118197581, 9.154939644273593689723852753604, 9.508218434809640462552057689155, 10.01189834274754399308534160477