Properties

Label 4-1280e2-1.1-c1e2-0-13
Degree 44
Conductor 16384001638400
Sign 11
Analytic cond. 104.465104.465
Root an. cond. 3.197003.19700
Motivic weight 11
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank 00

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 6·9-s + 12·17-s − 25-s + 4·41-s − 10·49-s − 12·73-s + 27·81-s + 12·89-s − 4·97-s − 12·113-s + 14·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s − 72·153-s + 157-s + 163-s + 167-s + 22·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + ⋯
L(s)  = 1  − 2·9-s + 2.91·17-s − 1/5·25-s + 0.624·41-s − 1.42·49-s − 1.40·73-s + 3·81-s + 1.27·89-s − 0.406·97-s − 1.12·113-s + 1.27·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s − 5.82·153-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 1.69·169-s + 0.0760·173-s + 0.0747·179-s + 0.0743·181-s + 0.0723·191-s + 0.0719·193-s + ⋯

Functional equation

Λ(s)=(1638400s/2ΓC(s)2L(s)=(Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut & 1638400 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}
Λ(s)=(1638400s/2ΓC(s+1/2)2L(s)=(Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 1638400 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}

Invariants

Degree: 44
Conductor: 16384001638400    =    216522^{16} \cdot 5^{2}
Sign: 11
Analytic conductor: 104.465104.465
Root analytic conductor: 3.197003.19700
Motivic weight: 11
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: 00
Selberg data: (4, 1638400, ( :1/2,1/2), 1)(4,\ 1638400,\ (\ :1/2, 1/2),\ 1)

Particular Values

L(1)L(1) \approx 1.6159572351.615957235
L(12)L(\frac12) \approx 1.6159572351.615957235
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppGal(Fp)\Gal(F_p)Fp(T)F_p(T)
bad2 1 1
5C2C_2 1+T2 1 + T^{2}
good3C2C_2 (1+pT2)2 ( 1 + p T^{2} )^{2}
7C2C_2 (12T+pT2)(1+2T+pT2) ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} )
11C2C_2 (16T+pT2)(1+6T+pT2) ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} )
13C22C_2^2 122T2+p2T4 1 - 22 T^{2} + p^{2} T^{4}
17C2C_2 (16T+pT2)2 ( 1 - 6 T + p T^{2} )^{2}
19C2C_2 (12T+pT2)(1+2T+pT2) ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} )
23C2C_2 (16T+pT2)(1+6T+pT2) ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} )
29C22C_2^2 122T2+p2T4 1 - 22 T^{2} + p^{2} T^{4}
31C2C_2 (14T+pT2)(1+4T+pT2) ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} )
37C22C_2^2 138T2+p2T4 1 - 38 T^{2} + p^{2} T^{4}
41C2C_2 (12T+pT2)2 ( 1 - 2 T + p T^{2} )^{2}
43C2C_2 (14T+pT2)(1+4T+pT2) ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} )
47C2C_2 (110T+pT2)(1+10T+pT2) ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} )
53C22C_2^2 1102T2+p2T4 1 - 102 T^{2} + p^{2} T^{4}
59C2C_2 (110T+pT2)(1+10T+pT2) ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} )
61C2C_2 (112T+pT2)(1+12T+pT2) ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} )
67C2C_2 (14T+pT2)(1+4T+pT2) ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} )
71C2C_2 (116T+pT2)(1+16T+pT2) ( 1 - 16 T + p T^{2} )( 1 + 16 T + p T^{2} )
73C2C_2 (1+6T+pT2)2 ( 1 + 6 T + p T^{2} )^{2}
79C2C_2 (1+pT2)2 ( 1 + p T^{2} )^{2}
83C2C_2 (18T+pT2)(1+8T+pT2) ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} )
89C2C_2 (16T+pT2)2 ( 1 - 6 T + p T^{2} )^{2}
97C2C_2 (1+2T+pT2)2 ( 1 + 2 T + p T^{2} )^{2}
show more
show less
   L(s)=p j=14(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−7.84053636044380634178453171613, −7.62954038253897473916132883377, −7.07230162567553638347891856796, −6.44153933652769497348437616984, −5.99795914271701642459053037469, −5.64866923363253411173083313562, −5.44687607394499191244426030925, −4.90767344408195796395471105229, −4.31294757551327872465004087772, −3.50113620224598560221314074122, −3.26224419626655858253980059298, −2.91215347470392320735348338574, −2.19704889993503766393438920097, −1.37417033624516344703131849837, −0.56034159917687419617572061668, 0.56034159917687419617572061668, 1.37417033624516344703131849837, 2.19704889993503766393438920097, 2.91215347470392320735348338574, 3.26224419626655858253980059298, 3.50113620224598560221314074122, 4.31294757551327872465004087772, 4.90767344408195796395471105229, 5.44687607394499191244426030925, 5.64866923363253411173083313562, 5.99795914271701642459053037469, 6.44153933652769497348437616984, 7.07230162567553638347891856796, 7.62954038253897473916132883377, 7.84053636044380634178453171613

Graph of the ZZ-function along the critical line