L(s) = 1 | − 6·9-s + 12·17-s − 25-s + 4·41-s − 10·49-s − 12·73-s + 27·81-s + 12·89-s − 4·97-s − 12·113-s + 14·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s − 72·153-s + 157-s + 163-s + 167-s + 22·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + ⋯ |
L(s) = 1 | − 2·9-s + 2.91·17-s − 1/5·25-s + 0.624·41-s − 1.42·49-s − 1.40·73-s + 3·81-s + 1.27·89-s − 0.406·97-s − 1.12·113-s + 1.27·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s − 5.82·153-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 1.69·169-s + 0.0760·173-s + 0.0747·179-s + 0.0743·181-s + 0.0723·191-s + 0.0719·193-s + ⋯ |
Λ(s)=(=(1638400s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(1638400s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
1638400
= 216⋅52
|
Sign: |
1
|
Analytic conductor: |
104.465 |
Root analytic conductor: |
3.19700 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
yes
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 1638400, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
1.615957235 |
L(21) |
≈ |
1.615957235 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 5 | C2 | 1+T2 |
good | 3 | C2 | (1+pT2)2 |
| 7 | C2 | (1−2T+pT2)(1+2T+pT2) |
| 11 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 13 | C22 | 1−22T2+p2T4 |
| 17 | C2 | (1−6T+pT2)2 |
| 19 | C2 | (1−2T+pT2)(1+2T+pT2) |
| 23 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 29 | C22 | 1−22T2+p2T4 |
| 31 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 37 | C22 | 1−38T2+p2T4 |
| 41 | C2 | (1−2T+pT2)2 |
| 43 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 47 | C2 | (1−10T+pT2)(1+10T+pT2) |
| 53 | C22 | 1−102T2+p2T4 |
| 59 | C2 | (1−10T+pT2)(1+10T+pT2) |
| 61 | C2 | (1−12T+pT2)(1+12T+pT2) |
| 67 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 71 | C2 | (1−16T+pT2)(1+16T+pT2) |
| 73 | C2 | (1+6T+pT2)2 |
| 79 | C2 | (1+pT2)2 |
| 83 | C2 | (1−8T+pT2)(1+8T+pT2) |
| 89 | C2 | (1−6T+pT2)2 |
| 97 | C2 | (1+2T+pT2)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.84053636044380634178453171613, −7.62954038253897473916132883377, −7.07230162567553638347891856796, −6.44153933652769497348437616984, −5.99795914271701642459053037469, −5.64866923363253411173083313562, −5.44687607394499191244426030925, −4.90767344408195796395471105229, −4.31294757551327872465004087772, −3.50113620224598560221314074122, −3.26224419626655858253980059298, −2.91215347470392320735348338574, −2.19704889993503766393438920097, −1.37417033624516344703131849837, −0.56034159917687419617572061668,
0.56034159917687419617572061668, 1.37417033624516344703131849837, 2.19704889993503766393438920097, 2.91215347470392320735348338574, 3.26224419626655858253980059298, 3.50113620224598560221314074122, 4.31294757551327872465004087772, 4.90767344408195796395471105229, 5.44687607394499191244426030925, 5.64866923363253411173083313562, 5.99795914271701642459053037469, 6.44153933652769497348437616984, 7.07230162567553638347891856796, 7.62954038253897473916132883377, 7.84053636044380634178453171613