L(s) = 1 | + 2·3-s − 4·5-s − 2·7-s + 2·9-s + 6·13-s − 8·15-s − 6·17-s + 12·19-s − 4·21-s − 6·23-s + 11·25-s + 6·27-s + 8·35-s + 6·37-s + 12·39-s − 12·41-s + 6·43-s − 8·45-s + 18·47-s + 2·49-s − 12·51-s + 10·53-s + 24·57-s + 20·59-s − 24·61-s − 4·63-s − 24·65-s + ⋯ |
L(s) = 1 | + 1.15·3-s − 1.78·5-s − 0.755·7-s + 2/3·9-s + 1.66·13-s − 2.06·15-s − 1.45·17-s + 2.75·19-s − 0.872·21-s − 1.25·23-s + 11/5·25-s + 1.15·27-s + 1.35·35-s + 0.986·37-s + 1.92·39-s − 1.87·41-s + 0.914·43-s − 1.19·45-s + 2.62·47-s + 2/7·49-s − 1.68·51-s + 1.37·53-s + 3.17·57-s + 2.60·59-s − 3.07·61-s − 0.503·63-s − 2.97·65-s + ⋯ |
Λ(s)=(=(1638400s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(1638400s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
1638400
= 216⋅52
|
Sign: |
1
|
Analytic conductor: |
104.465 |
Root analytic conductor: |
3.19700 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 1638400, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
2.252134334 |
L(21) |
≈ |
2.252134334 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 5 | C2 | 1+4T+pT2 |
good | 3 | C22 | 1−2T+2T2−2pT3+p2T4 |
| 7 | C22 | 1+2T+2T2+2pT3+p2T4 |
| 11 | C22 | 1−6T2+p2T4 |
| 13 | C22 | 1−6T+18T2−6pT3+p2T4 |
| 17 | C2 | (1−2T+pT2)(1+8T+pT2) |
| 19 | C2 | (1−6T+pT2)2 |
| 23 | C22 | 1+6T+18T2+6pT3+p2T4 |
| 29 | C22 | 1−54T2+p2T4 |
| 31 | C22 | 1−26T2+p2T4 |
| 37 | C22 | 1−6T+18T2−6pT3+p2T4 |
| 41 | C2 | (1+6T+pT2)2 |
| 43 | C22 | 1−6T+18T2−6pT3+p2T4 |
| 47 | C22 | 1−18T+162T2−18pT3+p2T4 |
| 53 | C2 | (1−14T+pT2)(1+4T+pT2) |
| 59 | C2 | (1−10T+pT2)2 |
| 61 | C2 | (1+12T+pT2)2 |
| 67 | C22 | 1−18T+162T2−18pT3+p2T4 |
| 71 | C22 | 1−106T2+p2T4 |
| 73 | C2 | (1−6T+pT2)(1+16T+pT2) |
| 79 | C2 | (1+pT2)2 |
| 83 | C22 | 1+6T+18T2+6pT3+p2T4 |
| 89 | C2 | (1−pT2)2 |
| 97 | C22 | 1+14T+98T2+14pT3+p2T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.539994810994042521246872505391, −9.520284011433220289967643089439, −8.873495929082855836628155208453, −8.617914218246992681510748451867, −8.319963941414979635705062489178, −7.954351199074866528575922904573, −7.43613424880558753341772018411, −7.16343907583786005929418723647, −6.76078023017890266240201548927, −6.32522873187797143820731578818, −5.53429960314262907686507309015, −5.38203084575206009875689790453, −4.31392515244849746139924828302, −4.16015594184457010061608941458, −3.81078526827458449596811091803, −3.25006326354692888511777464048, −2.93550550580576916165475114295, −2.39747503569600525383894734055, −1.30235978816778227887700498647, −0.65582297781718012055007100399,
0.65582297781718012055007100399, 1.30235978816778227887700498647, 2.39747503569600525383894734055, 2.93550550580576916165475114295, 3.25006326354692888511777464048, 3.81078526827458449596811091803, 4.16015594184457010061608941458, 4.31392515244849746139924828302, 5.38203084575206009875689790453, 5.53429960314262907686507309015, 6.32522873187797143820731578818, 6.76078023017890266240201548927, 7.16343907583786005929418723647, 7.43613424880558753341772018411, 7.954351199074866528575922904573, 8.319963941414979635705062489178, 8.617914218246992681510748451867, 8.873495929082855836628155208453, 9.520284011433220289967643089439, 9.539994810994042521246872505391