Properties

Label 4-1280e2-1.1-c1e2-0-18
Degree $4$
Conductor $1638400$
Sign $1$
Analytic cond. $104.465$
Root an. cond. $3.19700$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·9-s + 12·17-s − 25-s − 16·31-s + 12·41-s − 24·47-s − 14·49-s + 8·71-s + 20·73-s + 16·79-s − 5·81-s − 28·89-s + 12·97-s − 16·103-s + 4·113-s + 18·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 24·153-s + 157-s + 163-s + 167-s + 22·169-s + ⋯
L(s)  = 1  + 2/3·9-s + 2.91·17-s − 1/5·25-s − 2.87·31-s + 1.87·41-s − 3.50·47-s − 2·49-s + 0.949·71-s + 2.34·73-s + 1.80·79-s − 5/9·81-s − 2.96·89-s + 1.21·97-s − 1.57·103-s + 0.376·113-s + 1.63·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 1.94·153-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 1.69·169-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1638400 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1638400 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(1638400\)    =    \(2^{16} \cdot 5^{2}\)
Sign: $1$
Analytic conductor: \(104.465\)
Root analytic conductor: \(3.19700\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 1638400,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.304515843\)
\(L(\frac12)\) \(\approx\) \(2.304515843\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
5$C_2$ \( 1 + T^{2} \)
good3$C_2^2$ \( 1 - 2 T^{2} + p^{2} T^{4} \)
7$C_2$ \( ( 1 + p T^{2} )^{2} \)
11$C_2^2$ \( 1 - 18 T^{2} + p^{2} T^{4} \)
13$C_2^2$ \( 1 - 22 T^{2} + p^{2} T^{4} \)
17$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
19$C_2^2$ \( 1 - 2 T^{2} + p^{2} T^{4} \)
23$C_2$ \( ( 1 + p T^{2} )^{2} \)
29$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
31$C_2$ \( ( 1 + 8 T + p T^{2} )^{2} \)
37$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
41$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
43$C_2^2$ \( 1 - 82 T^{2} + p^{2} T^{4} \)
47$C_2$ \( ( 1 + 12 T + p T^{2} )^{2} \)
53$C_2^2$ \( 1 - 6 T^{2} + p^{2} T^{4} \)
59$C_2^2$ \( 1 - 82 T^{2} + p^{2} T^{4} \)
61$C_2^2$ \( 1 - 86 T^{2} + p^{2} T^{4} \)
67$C_2^2$ \( 1 + 62 T^{2} + p^{2} T^{4} \)
71$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
73$C_2$ \( ( 1 - 10 T + p T^{2} )^{2} \)
79$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \)
83$C_2^2$ \( 1 - 66 T^{2} + p^{2} T^{4} \)
89$C_2$ \( ( 1 + 14 T + p T^{2} )^{2} \)
97$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.816460131092580303730868942707, −9.499169070666755080743966375674, −9.434934158302636330706413414090, −8.428869001446564336675684523140, −8.281400874198584780675458182553, −7.69256064883140028023155388733, −7.62060490790740585039149089420, −7.06159802292879535449280223685, −6.61409216123563902817097371329, −6.10752696829609909612834059768, −5.61183253021110206336438294167, −5.26228028831160479432194375085, −4.93179507836092600893406896408, −4.23081623646308756979369204744, −3.59845659618850537199307707056, −3.41933549884485872791202548018, −2.89836776295036517993281273341, −1.79161102140111418930235135355, −1.63414245439130381187608014171, −0.66125372831476618152163623079, 0.66125372831476618152163623079, 1.63414245439130381187608014171, 1.79161102140111418930235135355, 2.89836776295036517993281273341, 3.41933549884485872791202548018, 3.59845659618850537199307707056, 4.23081623646308756979369204744, 4.93179507836092600893406896408, 5.26228028831160479432194375085, 5.61183253021110206336438294167, 6.10752696829609909612834059768, 6.61409216123563902817097371329, 7.06159802292879535449280223685, 7.62060490790740585039149089420, 7.69256064883140028023155388733, 8.281400874198584780675458182553, 8.428869001446564336675684523140, 9.434934158302636330706413414090, 9.499169070666755080743966375674, 9.816460131092580303730868942707

Graph of the $Z$-function along the critical line