L(s) = 1 | + 2·9-s + 12·17-s − 25-s − 16·31-s + 12·41-s − 24·47-s − 14·49-s + 8·71-s + 20·73-s + 16·79-s − 5·81-s − 28·89-s + 12·97-s − 16·103-s + 4·113-s + 18·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 24·153-s + 157-s + 163-s + 167-s + 22·169-s + ⋯ |
L(s) = 1 | + 2/3·9-s + 2.91·17-s − 1/5·25-s − 2.87·31-s + 1.87·41-s − 3.50·47-s − 2·49-s + 0.949·71-s + 2.34·73-s + 1.80·79-s − 5/9·81-s − 2.96·89-s + 1.21·97-s − 1.57·103-s + 0.376·113-s + 1.63·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 1.94·153-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 1.69·169-s + ⋯ |
Λ(s)=(=(1638400s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(1638400s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
1638400
= 216⋅52
|
Sign: |
1
|
Analytic conductor: |
104.465 |
Root analytic conductor: |
3.19700 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 1638400, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
2.304515843 |
L(21) |
≈ |
2.304515843 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 5 | C2 | 1+T2 |
good | 3 | C22 | 1−2T2+p2T4 |
| 7 | C2 | (1+pT2)2 |
| 11 | C22 | 1−18T2+p2T4 |
| 13 | C22 | 1−22T2+p2T4 |
| 17 | C2 | (1−6T+pT2)2 |
| 19 | C22 | 1−2T2+p2T4 |
| 23 | C2 | (1+pT2)2 |
| 29 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 31 | C2 | (1+8T+pT2)2 |
| 37 | C2 | (1−12T+pT2)(1+12T+pT2) |
| 41 | C2 | (1−6T+pT2)2 |
| 43 | C22 | 1−82T2+p2T4 |
| 47 | C2 | (1+12T+pT2)2 |
| 53 | C22 | 1−6T2+p2T4 |
| 59 | C22 | 1−82T2+p2T4 |
| 61 | C22 | 1−86T2+p2T4 |
| 67 | C22 | 1+62T2+p2T4 |
| 71 | C2 | (1−4T+pT2)2 |
| 73 | C2 | (1−10T+pT2)2 |
| 79 | C2 | (1−8T+pT2)2 |
| 83 | C22 | 1−66T2+p2T4 |
| 89 | C2 | (1+14T+pT2)2 |
| 97 | C2 | (1−6T+pT2)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.816460131092580303730868942707, −9.499169070666755080743966375674, −9.434934158302636330706413414090, −8.428869001446564336675684523140, −8.281400874198584780675458182553, −7.69256064883140028023155388733, −7.62060490790740585039149089420, −7.06159802292879535449280223685, −6.61409216123563902817097371329, −6.10752696829609909612834059768, −5.61183253021110206336438294167, −5.26228028831160479432194375085, −4.93179507836092600893406896408, −4.23081623646308756979369204744, −3.59845659618850537199307707056, −3.41933549884485872791202548018, −2.89836776295036517993281273341, −1.79161102140111418930235135355, −1.63414245439130381187608014171, −0.66125372831476618152163623079,
0.66125372831476618152163623079, 1.63414245439130381187608014171, 1.79161102140111418930235135355, 2.89836776295036517993281273341, 3.41933549884485872791202548018, 3.59845659618850537199307707056, 4.23081623646308756979369204744, 4.93179507836092600893406896408, 5.26228028831160479432194375085, 5.61183253021110206336438294167, 6.10752696829609909612834059768, 6.61409216123563902817097371329, 7.06159802292879535449280223685, 7.62060490790740585039149089420, 7.69256064883140028023155388733, 8.281400874198584780675458182553, 8.428869001446564336675684523140, 9.434934158302636330706413414090, 9.499169070666755080743966375674, 9.816460131092580303730868942707