L(s) = 1 | + 2·3-s + 4·5-s − 6·7-s + 2·9-s + 4·11-s + 6·13-s + 8·15-s + 2·17-s − 12·21-s − 2·23-s + 11·25-s + 6·27-s + 8·33-s − 24·35-s − 2·37-s + 12·39-s + 20·41-s − 10·43-s + 8·45-s + 6·47-s + 18·49-s + 4·51-s + 10·53-s + 16·55-s − 12·63-s + 24·65-s + 2·67-s + ⋯ |
L(s) = 1 | + 1.15·3-s + 1.78·5-s − 2.26·7-s + 2/3·9-s + 1.20·11-s + 1.66·13-s + 2.06·15-s + 0.485·17-s − 2.61·21-s − 0.417·23-s + 11/5·25-s + 1.15·27-s + 1.39·33-s − 4.05·35-s − 0.328·37-s + 1.92·39-s + 3.12·41-s − 1.52·43-s + 1.19·45-s + 0.875·47-s + 18/7·49-s + 0.560·51-s + 1.37·53-s + 2.15·55-s − 1.51·63-s + 2.97·65-s + 0.244·67-s + ⋯ |
Λ(s)=(=(1638400s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(1638400s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
1638400
= 216⋅52
|
Sign: |
1
|
Analytic conductor: |
104.465 |
Root analytic conductor: |
3.19700 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 1638400, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
4.973885177 |
L(21) |
≈ |
4.973885177 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 5 | C2 | 1−4T+pT2 |
good | 3 | C22 | 1−2T+2T2−2pT3+p2T4 |
| 7 | C22 | 1+6T+18T2+6pT3+p2T4 |
| 11 | C2 | (1−2T+pT2)2 |
| 13 | C22 | 1−6T+18T2−6pT3+p2T4 |
| 17 | C22 | 1−2T+2T2−2pT3+p2T4 |
| 19 | C22 | 1−22T2+p2T4 |
| 23 | C22 | 1+2T+2T2+2pT3+p2T4 |
| 29 | C2 | (1+pT2)2 |
| 31 | C22 | 1+38T2+p2T4 |
| 37 | C22 | 1+2T+2T2+2pT3+p2T4 |
| 41 | C2 | (1−10T+pT2)2 |
| 43 | C22 | 1+10T+50T2+10pT3+p2T4 |
| 47 | C22 | 1−6T+18T2−6pT3+p2T4 |
| 53 | C2 | (1−14T+pT2)(1+4T+pT2) |
| 59 | C22 | 1+26T2+p2T4 |
| 61 | C22 | 1−118T2+p2T4 |
| 67 | C22 | 1−2T+2T2−2pT3+p2T4 |
| 71 | C22 | 1−138T2+p2T4 |
| 73 | C22 | 1+2T+2T2+2pT3+p2T4 |
| 79 | C2 | (1+8T+pT2)2 |
| 83 | C22 | 1−10T+50T2−10pT3+p2T4 |
| 89 | C2 | (1−10T+pT2)(1+10T+pT2) |
| 97 | C22 | 1+6T+18T2+6pT3+p2T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.645350837740558908925893226743, −9.402456803584422082986961650440, −9.183588706578470632279672495318, −8.875916381237804046764419913818, −8.442967585645943387558307781780, −8.054915792416821113508114592346, −7.09784449636194623806615124941, −7.04691145765800249607407565859, −6.41447180530827700891439005324, −6.26544967810012028475264976236, −5.71220766864053706978570655988, −5.70035539540159393762998946890, −4.65789450072451515343506568620, −4.00085779896879103884871738354, −3.64492132258854567330998707155, −3.25428908236209704701738066116, −2.65187037517861713573738993739, −2.38533361247367005137780260175, −1.42990253219613563328555726280, −0.976448526410779716129716993104,
0.976448526410779716129716993104, 1.42990253219613563328555726280, 2.38533361247367005137780260175, 2.65187037517861713573738993739, 3.25428908236209704701738066116, 3.64492132258854567330998707155, 4.00085779896879103884871738354, 4.65789450072451515343506568620, 5.70035539540159393762998946890, 5.71220766864053706978570655988, 6.26544967810012028475264976236, 6.41447180530827700891439005324, 7.04691145765800249607407565859, 7.09784449636194623806615124941, 8.054915792416821113508114592346, 8.442967585645943387558307781780, 8.875916381237804046764419913818, 9.183588706578470632279672495318, 9.402456803584422082986961650440, 9.645350837740558908925893226743