Properties

Label 4-1280e2-1.1-c1e2-0-41
Degree $4$
Conductor $1638400$
Sign $1$
Analytic cond. $104.465$
Root an. cond. $3.19700$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·3-s + 4·5-s − 6·7-s + 2·9-s + 4·11-s + 6·13-s + 8·15-s + 2·17-s − 12·21-s − 2·23-s + 11·25-s + 6·27-s + 8·33-s − 24·35-s − 2·37-s + 12·39-s + 20·41-s − 10·43-s + 8·45-s + 6·47-s + 18·49-s + 4·51-s + 10·53-s + 16·55-s − 12·63-s + 24·65-s + 2·67-s + ⋯
L(s)  = 1  + 1.15·3-s + 1.78·5-s − 2.26·7-s + 2/3·9-s + 1.20·11-s + 1.66·13-s + 2.06·15-s + 0.485·17-s − 2.61·21-s − 0.417·23-s + 11/5·25-s + 1.15·27-s + 1.39·33-s − 4.05·35-s − 0.328·37-s + 1.92·39-s + 3.12·41-s − 1.52·43-s + 1.19·45-s + 0.875·47-s + 18/7·49-s + 0.560·51-s + 1.37·53-s + 2.15·55-s − 1.51·63-s + 2.97·65-s + 0.244·67-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1638400 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1638400 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(1638400\)    =    \(2^{16} \cdot 5^{2}\)
Sign: $1$
Analytic conductor: \(104.465\)
Root analytic conductor: \(3.19700\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 1638400,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(4.973885177\)
\(L(\frac12)\) \(\approx\) \(4.973885177\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
5$C_2$ \( 1 - 4 T + p T^{2} \)
good3$C_2^2$ \( 1 - 2 T + 2 T^{2} - 2 p T^{3} + p^{2} T^{4} \)
7$C_2^2$ \( 1 + 6 T + 18 T^{2} + 6 p T^{3} + p^{2} T^{4} \)
11$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
13$C_2^2$ \( 1 - 6 T + 18 T^{2} - 6 p T^{3} + p^{2} T^{4} \)
17$C_2^2$ \( 1 - 2 T + 2 T^{2} - 2 p T^{3} + p^{2} T^{4} \)
19$C_2^2$ \( 1 - 22 T^{2} + p^{2} T^{4} \)
23$C_2^2$ \( 1 + 2 T + 2 T^{2} + 2 p T^{3} + p^{2} T^{4} \)
29$C_2$ \( ( 1 + p T^{2} )^{2} \)
31$C_2^2$ \( 1 + 38 T^{2} + p^{2} T^{4} \)
37$C_2^2$ \( 1 + 2 T + 2 T^{2} + 2 p T^{3} + p^{2} T^{4} \)
41$C_2$ \( ( 1 - 10 T + p T^{2} )^{2} \)
43$C_2^2$ \( 1 + 10 T + 50 T^{2} + 10 p T^{3} + p^{2} T^{4} \)
47$C_2^2$ \( 1 - 6 T + 18 T^{2} - 6 p T^{3} + p^{2} T^{4} \)
53$C_2$ \( ( 1 - 14 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
59$C_2^2$ \( 1 + 26 T^{2} + p^{2} T^{4} \)
61$C_2^2$ \( 1 - 118 T^{2} + p^{2} T^{4} \)
67$C_2^2$ \( 1 - 2 T + 2 T^{2} - 2 p T^{3} + p^{2} T^{4} \)
71$C_2^2$ \( 1 - 138 T^{2} + p^{2} T^{4} \)
73$C_2^2$ \( 1 + 2 T + 2 T^{2} + 2 p T^{3} + p^{2} T^{4} \)
79$C_2$ \( ( 1 + 8 T + p T^{2} )^{2} \)
83$C_2^2$ \( 1 - 10 T + 50 T^{2} - 10 p T^{3} + p^{2} T^{4} \)
89$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
97$C_2^2$ \( 1 + 6 T + 18 T^{2} + 6 p T^{3} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.645350837740558908925893226743, −9.402456803584422082986961650440, −9.183588706578470632279672495318, −8.875916381237804046764419913818, −8.442967585645943387558307781780, −8.054915792416821113508114592346, −7.09784449636194623806615124941, −7.04691145765800249607407565859, −6.41447180530827700891439005324, −6.26544967810012028475264976236, −5.71220766864053706978570655988, −5.70035539540159393762998946890, −4.65789450072451515343506568620, −4.00085779896879103884871738354, −3.64492132258854567330998707155, −3.25428908236209704701738066116, −2.65187037517861713573738993739, −2.38533361247367005137780260175, −1.42990253219613563328555726280, −0.976448526410779716129716993104, 0.976448526410779716129716993104, 1.42990253219613563328555726280, 2.38533361247367005137780260175, 2.65187037517861713573738993739, 3.25428908236209704701738066116, 3.64492132258854567330998707155, 4.00085779896879103884871738354, 4.65789450072451515343506568620, 5.70035539540159393762998946890, 5.71220766864053706978570655988, 6.26544967810012028475264976236, 6.41447180530827700891439005324, 7.04691145765800249607407565859, 7.09784449636194623806615124941, 8.054915792416821113508114592346, 8.442967585645943387558307781780, 8.875916381237804046764419913818, 9.183588706578470632279672495318, 9.402456803584422082986961650440, 9.645350837740558908925893226743

Graph of the $Z$-function along the critical line