L(s) = 1 | − 12·7-s + 50·9-s + 52·17-s + 156·23-s − 25·25-s − 216·31-s − 44·41-s − 1.02e3·47-s − 578·49-s − 600·63-s − 824·71-s + 1.75e3·73-s + 1.20e3·79-s + 1.77e3·81-s + 300·89-s + 772·97-s + 1.19e3·103-s + 3.12e3·113-s − 624·119-s + 1.63e3·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 2.60e3·153-s + ⋯ |
L(s) = 1 | − 0.647·7-s + 1.85·9-s + 0.741·17-s + 1.41·23-s − 1/5·25-s − 1.25·31-s − 0.167·41-s − 3.19·47-s − 1.68·49-s − 1.19·63-s − 1.37·71-s + 2.81·73-s + 1.70·79-s + 2.42·81-s + 0.357·89-s + 0.808·97-s + 1.14·103-s + 2.60·113-s − 0.480·119-s + 1.23·121-s + 0.000698·127-s + 0.000666·131-s + 0.000623·137-s + 0.000610·139-s + 0.000549·149-s + 0.000538·151-s + 1.37·153-s + ⋯ |
Λ(s)=(=(1638400s/2ΓC(s)2L(s)Λ(4−s)
Λ(s)=(=(1638400s/2ΓC(s+3/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
1638400
= 216⋅52
|
Sign: |
1
|
Analytic conductor: |
5703.63 |
Root analytic conductor: |
8.69036 |
Motivic weight: |
3 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 1638400, ( :3/2,3/2), 1)
|
Particular Values
L(2) |
≈ |
3.313081129 |
L(21) |
≈ |
3.313081129 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 5 | C2 | 1+p2T2 |
good | 3 | C22 | 1−50T2+p6T4 |
| 7 | C2 | (1+6T+p3T2)2 |
| 11 | C22 | 1−1638T2+p6T4 |
| 13 | C22 | 1−2950T2+p6T4 |
| 17 | C2 | (1−26T+p3T2)2 |
| 19 | C22 | 1−3718T2+p6T4 |
| 23 | C2 | (1−78T+p3T2)2 |
| 29 | C22 | 1−46278T2+p6T4 |
| 31 | C2 | (1+108T+p3T2)2 |
| 37 | C22 | 1−30550T2+p6T4 |
| 41 | C2 | (1+22T+p3T2)2 |
| 43 | C22 | 1+36350T2+p6T4 |
| 47 | C2 | (1+514T+p3T2)2 |
| 53 | C22 | 1−297750T2+p6T4 |
| 59 | C22 | 1−160758T2+p6T4 |
| 61 | C22 | 1−185638T2+p6T4 |
| 67 | C22 | 1−585650T2+p6T4 |
| 71 | C2 | (1+412T+p3T2)2 |
| 73 | C2 | (1−878T+p3T2)2 |
| 79 | C2 | (1−600T+p3T2)2 |
| 83 | C22 | 1−1064050T2+p6T4 |
| 89 | C2 | (1−150T+p3T2)2 |
| 97 | C2 | (1−386T+p3T2)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.502840790716678306870017170525, −9.379882434636669955351346149267, −8.648867879379876927101683888800, −8.324399933382693724596262214049, −7.61063701121957513711166948380, −7.60701935564063159120556809079, −6.95888381870986730612657390245, −6.70782261965001786869428689032, −6.31868363154200435459794213377, −5.82575371851561993031743552373, −5.03053531508750380963378540030, −4.91936563217609242711024672185, −4.48623018539530115482068681255, −3.70643185142289997713092646597, −3.30123780713131655900810561388, −3.19947598367517014474693879066, −1.94573033343062993260221654129, −1.84648132656004475961690105100, −1.04467332713503474572271910760, −0.47795396462831431387301314890,
0.47795396462831431387301314890, 1.04467332713503474572271910760, 1.84648132656004475961690105100, 1.94573033343062993260221654129, 3.19947598367517014474693879066, 3.30123780713131655900810561388, 3.70643185142289997713092646597, 4.48623018539530115482068681255, 4.91936563217609242711024672185, 5.03053531508750380963378540030, 5.82575371851561993031743552373, 6.31868363154200435459794213377, 6.70782261965001786869428689032, 6.95888381870986730612657390245, 7.60701935564063159120556809079, 7.61063701121957513711166948380, 8.324399933382693724596262214049, 8.648867879379876927101683888800, 9.379882434636669955351346149267, 9.502840790716678306870017170525