L(s) = 1 | − 10·5-s − 44·9-s + 4·13-s + 92·17-s + 75·25-s + 232·29-s − 148·37-s − 480·41-s + 440·45-s − 436·49-s − 476·53-s + 1.35e3·61-s − 40·65-s − 1.95e3·73-s + 1.20e3·81-s − 920·85-s − 2.10e3·89-s + 548·97-s − 1.28e3·101-s + 580·109-s − 244·113-s − 176·117-s − 2.02e3·121-s − 500·125-s + 127-s + 131-s + 137-s + ⋯ |
L(s) = 1 | − 0.894·5-s − 1.62·9-s + 0.0853·13-s + 1.31·17-s + 3/5·25-s + 1.48·29-s − 0.657·37-s − 1.82·41-s + 1.45·45-s − 1.27·49-s − 1.23·53-s + 2.84·61-s − 0.0763·65-s − 3.13·73-s + 1.65·81-s − 1.17·85-s − 2.50·89-s + 0.573·97-s − 1.26·101-s + 0.509·109-s − 0.203·113-s − 0.139·117-s − 1.51·121-s − 0.357·125-s + 0.000698·127-s + 0.000666·131-s + 0.000623·137-s + ⋯ |
Λ(s)=(=(1638400s/2ΓC(s)2L(s)Λ(4−s)
Λ(s)=(=(1638400s/2ΓC(s+3/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
1638400
= 216⋅52
|
Sign: |
1
|
Analytic conductor: |
5703.63 |
Root analytic conductor: |
8.69036 |
Motivic weight: |
3 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
2
|
Selberg data: |
(4, 1638400, ( :3/2,3/2), 1)
|
Particular Values
L(2) |
= |
0 |
L(21) |
= |
0 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 5 | C1 | (1+pT)2 |
good | 3 | C22 | 1+44T2+p6T4 |
| 7 | C22 | 1+436T2+p6T4 |
| 11 | C22 | 1+2022T2+p6T4 |
| 13 | C2 | (1−2T+p3T2)2 |
| 17 | C2 | (1−46T+p3T2)2 |
| 19 | C22 | 1−2p2T2+p6T4 |
| 23 | C22 | 1−10476T2+p6T4 |
| 29 | C2 | (1−4pT+p3T2)2 |
| 31 | C22 | 1+54742T2+p6T4 |
| 37 | C2 | (1+2pT+p3T2)2 |
| 41 | C2 | (1+240T+p3T2)2 |
| 43 | C22 | 1+108604T2+p6T4 |
| 47 | C22 | 1+61236T2+p6T4 |
| 53 | C2 | (1+238T+p3T2)2 |
| 59 | C22 | 1+220318T2+p6T4 |
| 61 | C2 | (1−678T+p3T2)2 |
| 67 | C22 | 1+601436T2+p6T4 |
| 71 | C22 | 1+240582T2+p6T4 |
| 73 | C2 | (1+978T+p3T2)2 |
| 79 | C22 | 1+886078T2+p6T4 |
| 83 | C22 | 1+483084T2+p6T4 |
| 89 | C2 | (1+1050T+p3T2)2 |
| 97 | C2 | (1−274T+p3T2)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.865024397582155884948667792994, −8.558259978918684191814451251226, −8.319220103576333004935578660068, −8.080615308780335237249834979207, −7.47765800920758344060452704806, −7.13221283893254287337527364566, −6.43895243266082401476759860242, −6.40199972551993587911004738282, −5.54245764841009828813822625908, −5.39226870881797375594504846468, −4.91266688433564974900002609175, −4.37137720256668776793920583355, −3.71901149142790443334133210324, −3.34335628134583690205731754600, −2.92188866341407871154536718998, −2.53075107924500005423419044268, −1.53832001176797599123833877326, −1.04571775778523527492318985968, 0, 0,
1.04571775778523527492318985968, 1.53832001176797599123833877326, 2.53075107924500005423419044268, 2.92188866341407871154536718998, 3.34335628134583690205731754600, 3.71901149142790443334133210324, 4.37137720256668776793920583355, 4.91266688433564974900002609175, 5.39226870881797375594504846468, 5.54245764841009828813822625908, 6.40199972551993587911004738282, 6.43895243266082401476759860242, 7.13221283893254287337527364566, 7.47765800920758344060452704806, 8.080615308780335237249834979207, 8.319220103576333004935578660068, 8.558259978918684191814451251226, 8.865024397582155884948667792994