L(s) = 1 | + 10·5-s − 20·9-s − 20·13-s − 84·17-s + 75·25-s + 24·29-s − 364·37-s − 16·41-s − 200·45-s − 652·49-s − 692·53-s + 1.17e3·61-s − 200·65-s − 116·73-s − 329·81-s − 840·85-s + 876·89-s − 2.95e3·97-s − 1.02e3·101-s + 1.50e3·109-s − 3.47e3·113-s + 400·117-s − 2.11e3·121-s + 500·125-s + 127-s + 131-s + 137-s + ⋯ |
L(s) = 1 | + 0.894·5-s − 0.740·9-s − 0.426·13-s − 1.19·17-s + 3/5·25-s + 0.153·29-s − 1.61·37-s − 0.0609·41-s − 0.662·45-s − 1.90·49-s − 1.79·53-s + 2.45·61-s − 0.381·65-s − 0.185·73-s − 0.451·81-s − 1.07·85-s + 1.04·89-s − 3.09·97-s − 1.00·101-s + 1.31·109-s − 2.89·113-s + 0.316·117-s − 1.59·121-s + 0.357·125-s + 0.000698·127-s + 0.000666·131-s + 0.000623·137-s + ⋯ |
Λ(s)=(=(1638400s/2ΓC(s)2L(s)Λ(4−s)
Λ(s)=(=(1638400s/2ΓC(s+3/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
1638400
= 216⋅52
|
Sign: |
1
|
Analytic conductor: |
5703.63 |
Root analytic conductor: |
8.69036 |
Motivic weight: |
3 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
2
|
Selberg data: |
(4, 1638400, ( :3/2,3/2), 1)
|
Particular Values
L(2) |
= |
0 |
L(21) |
= |
0 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 5 | C1 | (1−pT)2 |
good | 3 | C22 | 1+20T2+p6T4 |
| 7 | C22 | 1+652T2+p6T4 |
| 11 | C22 | 1+2118T2+p6T4 |
| 13 | C2 | (1+10T+p3T2)2 |
| 17 | C2 | (1+42T+p3T2)2 |
| 19 | C22 | 1+12494T2+p6T4 |
| 23 | C22 | 1+21580T2+p6T4 |
| 29 | C2 | (1−12T+p3T2)2 |
| 31 | C22 | 1+43126T2+p6T4 |
| 37 | C2 | (1+182T+p3T2)2 |
| 41 | C2 | (1+8T+p3T2)2 |
| 43 | C22 | 1+48548T2+p6T4 |
| 47 | C22 | 1+165996T2+p6T4 |
| 53 | C2 | (1+346T+p3T2)2 |
| 59 | C22 | 1+159294T2+p6T4 |
| 61 | C2 | (1−586T+p3T2)2 |
| 67 | C22 | 1+18052T2+p6T4 |
| 71 | C22 | 1+666726T2+p6T4 |
| 73 | C2 | (1+58T+p3T2)2 |
| 79 | C22 | 1−542018T2+p6T4 |
| 83 | C22 | 1+1086420T2+p6T4 |
| 89 | C2 | (1−438T+p3T2)2 |
| 97 | C2 | (1+1478T+p3T2)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.990605580361402488415155311932, −8.831143831680356583622079251309, −8.219576812642405089708596251076, −8.115963879653458301978925709490, −7.40823418545090487208834159434, −6.88822619514463943346314866094, −6.47570820356023366291754443605, −6.44262515441773771627314368472, −5.52063210306383044297655800818, −5.46689028324171985792874291383, −4.87829418835866691937258525964, −4.51835617371829475861424651825, −3.80023968503339439830755981082, −3.34126763632260012801337593641, −2.65606522802566493242444111444, −2.39098853092476686762939464930, −1.70046342961834452284189357302, −1.22392467846219956374302175907, 0, 0,
1.22392467846219956374302175907, 1.70046342961834452284189357302, 2.39098853092476686762939464930, 2.65606522802566493242444111444, 3.34126763632260012801337593641, 3.80023968503339439830755981082, 4.51835617371829475861424651825, 4.87829418835866691937258525964, 5.46689028324171985792874291383, 5.52063210306383044297655800818, 6.44262515441773771627314368472, 6.47570820356023366291754443605, 6.88822619514463943346314866094, 7.40823418545090487208834159434, 8.115963879653458301978925709490, 8.219576812642405089708596251076, 8.831143831680356583622079251309, 8.990605580361402488415155311932