L(s) = 1 | + 3-s + 4-s + 2·7-s + 9-s + 12-s + 4·13-s + 16-s + 16·19-s + 2·21-s + 25-s + 27-s + 2·28-s − 8·31-s + 36-s − 20·37-s + 4·39-s − 8·43-s + 48-s + 3·49-s + 4·52-s + 16·57-s − 20·61-s + 2·63-s + 64-s − 8·67-s − 20·73-s + 75-s + ⋯ |
L(s) = 1 | + 0.577·3-s + 1/2·4-s + 0.755·7-s + 1/3·9-s + 0.288·12-s + 1.10·13-s + 1/4·16-s + 3.67·19-s + 0.436·21-s + 1/5·25-s + 0.192·27-s + 0.377·28-s − 1.43·31-s + 1/6·36-s − 3.28·37-s + 0.640·39-s − 1.21·43-s + 0.144·48-s + 3/7·49-s + 0.554·52-s + 2.11·57-s − 2.56·61-s + 0.251·63-s + 1/8·64-s − 0.977·67-s − 2.34·73-s + 0.115·75-s + ⋯ |
Λ(s)=(=(132300s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(132300s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
132300
= 22⋅33⋅52⋅72
|
Sign: |
1
|
Analytic conductor: |
8.43556 |
Root analytic conductor: |
1.70423 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 132300, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
2.747007217 |
L(21) |
≈ |
2.747007217 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | C1×C1 | (1−T)(1+T) |
| 3 | C1 | 1−T |
| 5 | C1×C1 | (1−T)(1+T) |
| 7 | C1 | (1−T)2 |
good | 11 | C2 | (1+pT2)2 |
| 13 | C2 | (1−2T+pT2)2 |
| 17 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 19 | C2 | (1−8T+pT2)2 |
| 23 | C2 | (1+pT2)2 |
| 29 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 31 | C2 | (1+4T+pT2)2 |
| 37 | C2 | (1+10T+pT2)2 |
| 41 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 43 | C2 | (1+4T+pT2)2 |
| 47 | C2 | (1+pT2)2 |
| 53 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 59 | C2 | (1−12T+pT2)(1+12T+pT2) |
| 61 | C2 | (1+10T+pT2)2 |
| 67 | C2 | (1+4T+pT2)2 |
| 71 | C2 | (1−12T+pT2)(1+12T+pT2) |
| 73 | C2 | (1+10T+pT2)2 |
| 79 | C2 | (1−8T+pT2)2 |
| 83 | C2 | (1−12T+pT2)(1+12T+pT2) |
| 89 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 97 | C2 | (1+10T+pT2)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.262397060563074490443203035163, −8.790922026040486061843055845413, −8.581528352643131576230344729464, −7.67845508591579519153392227466, −7.48230039465939347417283743898, −7.19801386358340821477645347390, −6.43968643454495280602009146366, −5.76093596813527562032392850894, −5.20272031164140682979668587117, −4.97103303999261607614028493172, −3.88273199773070623460496754838, −3.22977772739188491587716942834, −3.13125557587754062819456448397, −1.69594451483764738863265937021, −1.41006155845401754086894809680,
1.41006155845401754086894809680, 1.69594451483764738863265937021, 3.13125557587754062819456448397, 3.22977772739188491587716942834, 3.88273199773070623460496754838, 4.97103303999261607614028493172, 5.20272031164140682979668587117, 5.76093596813527562032392850894, 6.43968643454495280602009146366, 7.19801386358340821477645347390, 7.48230039465939347417283743898, 7.67845508591579519153392227466, 8.581528352643131576230344729464, 8.790922026040486061843055845413, 9.262397060563074490443203035163