Properties

Label 4-132300-1.1-c1e2-0-5
Degree $4$
Conductor $132300$
Sign $1$
Analytic cond. $8.43556$
Root an. cond. $1.70423$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 4-s + 4·5-s + 9-s + 12-s − 4·15-s + 16-s − 4·20-s + 11·25-s − 27-s − 36-s + 4·45-s + 16·47-s − 48-s − 7·49-s + 4·60-s − 64-s − 11·75-s + 16·79-s + 4·80-s + 81-s + 24·83-s − 11·100-s + 108-s − 28·109-s − 6·121-s + 24·125-s + ⋯
L(s)  = 1  − 0.577·3-s − 1/2·4-s + 1.78·5-s + 1/3·9-s + 0.288·12-s − 1.03·15-s + 1/4·16-s − 0.894·20-s + 11/5·25-s − 0.192·27-s − 1/6·36-s + 0.596·45-s + 2.33·47-s − 0.144·48-s − 49-s + 0.516·60-s − 1/8·64-s − 1.27·75-s + 1.80·79-s + 0.447·80-s + 1/9·81-s + 2.63·83-s − 1.09·100-s + 0.0962·108-s − 2.68·109-s − 0.545·121-s + 2.14·125-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 132300 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 132300 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(132300\)    =    \(2^{2} \cdot 3^{3} \cdot 5^{2} \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(8.43556\)
Root analytic conductor: \(1.70423\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 132300,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.659397097\)
\(L(\frac12)\) \(\approx\) \(1.659397097\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( 1 + T^{2} \)
3$C_1$ \( 1 + T \)
5$C_2$ \( 1 - 4 T + p T^{2} \)
7$C_2$ \( 1 + p T^{2} \)
good11$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
13$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
17$C_2$ \( ( 1 + p T^{2} )^{2} \)
19$C_2^2$ \( 1 - 22 T^{2} + p^{2} T^{4} \)
23$C_2$ \( ( 1 - p T^{2} )^{2} \)
29$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
31$C_2^2$ \( 1 + 2 T^{2} + p^{2} T^{4} \)
37$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
41$C_2$ \( ( 1 + p T^{2} )^{2} \)
43$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
47$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \)
53$C_2^2$ \( 1 - 6 T^{2} + p^{2} T^{4} \)
59$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
61$C_2^2$ \( 1 - 106 T^{2} + p^{2} T^{4} \)
67$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
71$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
73$C_2$ \( ( 1 - 16 T + p T^{2} )( 1 + 16 T + p T^{2} ) \)
79$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \)
83$C_2$ \( ( 1 - 12 T + p T^{2} )^{2} \)
89$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
97$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.382079667207611550181902865879, −9.166320354255721860880853713173, −8.527606124134460565465988984196, −7.927461294375509403356736877594, −7.36649750923666807230761191162, −6.60155933017990789780037515756, −6.42411140065541329502446951920, −5.74295706139379495360936903101, −5.38369296605186321956951583532, −4.93174302448540981311704327466, −4.27573257294083501838383539918, −3.50341666432398320311312850768, −2.59942620037353270460340022776, −1.94560952433490753418597398271, −0.988344135984823100739915057559, 0.988344135984823100739915057559, 1.94560952433490753418597398271, 2.59942620037353270460340022776, 3.50341666432398320311312850768, 4.27573257294083501838383539918, 4.93174302448540981311704327466, 5.38369296605186321956951583532, 5.74295706139379495360936903101, 6.42411140065541329502446951920, 6.60155933017990789780037515756, 7.36649750923666807230761191162, 7.927461294375509403356736877594, 8.527606124134460565465988984196, 9.166320354255721860880853713173, 9.382079667207611550181902865879

Graph of the $Z$-function along the critical line