L(s) = 1 | − 3-s − 4-s + 4·5-s + 9-s + 12-s − 4·15-s + 16-s − 4·20-s + 11·25-s − 27-s − 36-s + 4·45-s + 16·47-s − 48-s − 7·49-s + 4·60-s − 64-s − 11·75-s + 16·79-s + 4·80-s + 81-s + 24·83-s − 11·100-s + 108-s − 28·109-s − 6·121-s + 24·125-s + ⋯ |
L(s) = 1 | − 0.577·3-s − 1/2·4-s + 1.78·5-s + 1/3·9-s + 0.288·12-s − 1.03·15-s + 1/4·16-s − 0.894·20-s + 11/5·25-s − 0.192·27-s − 1/6·36-s + 0.596·45-s + 2.33·47-s − 0.144·48-s − 49-s + 0.516·60-s − 1/8·64-s − 1.27·75-s + 1.80·79-s + 0.447·80-s + 1/9·81-s + 2.63·83-s − 1.09·100-s + 0.0962·108-s − 2.68·109-s − 0.545·121-s + 2.14·125-s + ⋯ |
Λ(s)=(=(132300s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(132300s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
132300
= 22⋅33⋅52⋅72
|
Sign: |
1
|
Analytic conductor: |
8.43556 |
Root analytic conductor: |
1.70423 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
yes
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 132300, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
1.659397097 |
L(21) |
≈ |
1.659397097 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | C2 | 1+T2 |
| 3 | C1 | 1+T |
| 5 | C2 | 1−4T+pT2 |
| 7 | C2 | 1+pT2 |
good | 11 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 13 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 17 | C2 | (1+pT2)2 |
| 19 | C22 | 1−22T2+p2T4 |
| 23 | C2 | (1−pT2)2 |
| 29 | C2 | (1−2T+pT2)(1+2T+pT2) |
| 31 | C22 | 1+2T2+p2T4 |
| 37 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 41 | C2 | (1+pT2)2 |
| 43 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 47 | C2 | (1−8T+pT2)2 |
| 53 | C22 | 1−6T2+p2T4 |
| 59 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 61 | C22 | 1−106T2+p2T4 |
| 67 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 71 | C2 | (1−8T+pT2)(1+8T+pT2) |
| 73 | C2 | (1−16T+pT2)(1+16T+pT2) |
| 79 | C2 | (1−8T+pT2)2 |
| 83 | C2 | (1−12T+pT2)2 |
| 89 | C2 | (1−8T+pT2)(1+8T+pT2) |
| 97 | C2 | (1−8T+pT2)(1+8T+pT2) |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.382079667207611550181902865879, −9.166320354255721860880853713173, −8.527606124134460565465988984196, −7.927461294375509403356736877594, −7.36649750923666807230761191162, −6.60155933017990789780037515756, −6.42411140065541329502446951920, −5.74295706139379495360936903101, −5.38369296605186321956951583532, −4.93174302448540981311704327466, −4.27573257294083501838383539918, −3.50341666432398320311312850768, −2.59942620037353270460340022776, −1.94560952433490753418597398271, −0.988344135984823100739915057559,
0.988344135984823100739915057559, 1.94560952433490753418597398271, 2.59942620037353270460340022776, 3.50341666432398320311312850768, 4.27573257294083501838383539918, 4.93174302448540981311704327466, 5.38369296605186321956951583532, 5.74295706139379495360936903101, 6.42411140065541329502446951920, 6.60155933017990789780037515756, 7.36649750923666807230761191162, 7.927461294375509403356736877594, 8.527606124134460565465988984196, 9.166320354255721860880853713173, 9.382079667207611550181902865879