L(s) = 1 | + 2-s + 2·4-s + 5-s + 5·8-s + 10-s + 5·11-s − 5·13-s + 5·16-s + 6·17-s − 2·19-s + 2·20-s + 5·22-s + 3·23-s + 5·25-s − 5·26-s − 29-s + 10·32-s + 6·34-s + 6·37-s − 2·38-s + 5·40-s + 5·41-s + 43-s + 10·44-s + 3·46-s + 5·50-s − 10·52-s + ⋯ |
L(s) = 1 | + 0.707·2-s + 4-s + 0.447·5-s + 1.76·8-s + 0.316·10-s + 1.50·11-s − 1.38·13-s + 5/4·16-s + 1.45·17-s − 0.458·19-s + 0.447·20-s + 1.06·22-s + 0.625·23-s + 25-s − 0.980·26-s − 0.185·29-s + 1.76·32-s + 1.02·34-s + 0.986·37-s − 0.324·38-s + 0.790·40-s + 0.780·41-s + 0.152·43-s + 1.50·44-s + 0.442·46-s + 0.707·50-s − 1.38·52-s + ⋯ |
Λ(s)=(=(1750329s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(1750329s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
1750329
= 36⋅74
|
Sign: |
1
|
Analytic conductor: |
111.602 |
Root analytic conductor: |
3.25026 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 1750329, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
6.316075431 |
L(21) |
≈ |
6.316075431 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 3 | | 1 |
| 7 | | 1 |
good | 2 | C22 | 1−T−T2−pT3+p2T4 |
| 5 | C22 | 1−T−4T2−pT3+p2T4 |
| 11 | C22 | 1−5T+14T2−5pT3+p2T4 |
| 13 | C2 | (1−2T+pT2)(1+7T+pT2) |
| 17 | C2 | (1−3T+pT2)2 |
| 19 | C2 | (1+T+pT2)2 |
| 23 | C22 | 1−3T−14T2−3pT3+p2T4 |
| 29 | C22 | 1+T−28T2+pT3+p2T4 |
| 31 | C22 | 1−pT2+p2T4 |
| 37 | C2 | (1−3T+pT2)2 |
| 41 | C22 | 1−5T−16T2−5pT3+p2T4 |
| 43 | C22 | 1−T−42T2−pT3+p2T4 |
| 47 | C22 | 1−pT2+p2T4 |
| 53 | C2 | (1−9T+pT2)2 |
| 59 | C22 | 1−pT2+p2T4 |
| 61 | C2 | (1+T+pT2)(1+13T+pT2) |
| 67 | C22 | 1+4T−51T2+4pT3+p2T4 |
| 71 | C2 | (1−12T+pT2)2 |
| 73 | C2 | (1+3T+pT2)2 |
| 79 | C22 | 1+8T−15T2+8pT3+p2T4 |
| 83 | C22 | 1−9T−2T2−9pT3+p2T4 |
| 89 | C2 | (1+13T+pT2)2 |
| 97 | C22 | 1+9T−16T2+9pT3+p2T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.765654098758353579689589013217, −9.586589070570195209519435301502, −9.120325512982210974524711563501, −8.660790446321989972035890209934, −7.917792923176754336091702883245, −7.83251739516913704350720473763, −7.14676001407335559451244264342, −7.02564641711679470513237426715, −6.57975159154352760199619381254, −6.16084346737969298268377596778, −5.49820462400345034607263816226, −5.31943681330000463004881059574, −4.73996282288709150474556684470, −4.12162831739130975987444954383, −4.06224825622680534074913512773, −3.20436812250029263619432161122, −2.62445024600094657434524034121, −2.29332353966590750384064075843, −1.37531438124214562099809327447, −1.09410855423417378425821570018,
1.09410855423417378425821570018, 1.37531438124214562099809327447, 2.29332353966590750384064075843, 2.62445024600094657434524034121, 3.20436812250029263619432161122, 4.06224825622680534074913512773, 4.12162831739130975987444954383, 4.73996282288709150474556684470, 5.31943681330000463004881059574, 5.49820462400345034607263816226, 6.16084346737969298268377596778, 6.57975159154352760199619381254, 7.02564641711679470513237426715, 7.14676001407335559451244264342, 7.83251739516913704350720473763, 7.917792923176754336091702883245, 8.660790446321989972035890209934, 9.120325512982210974524711563501, 9.586589070570195209519435301502, 9.765654098758353579689589013217