L(s) = 1 | + 2·3-s − 2·5-s − 9-s − 2·11-s − 4·15-s − 12·17-s + 4·19-s − 14·23-s + 25-s − 6·27-s − 16·29-s − 2·31-s − 4·33-s + 6·37-s + 4·43-s + 2·45-s − 8·47-s − 12·49-s − 24·51-s + 4·55-s + 8·57-s + 2·59-s + 6·67-s − 28·69-s − 2·71-s − 16·73-s + 2·75-s + ⋯ |
L(s) = 1 | + 1.15·3-s − 0.894·5-s − 1/3·9-s − 0.603·11-s − 1.03·15-s − 2.91·17-s + 0.917·19-s − 2.91·23-s + 1/5·25-s − 1.15·27-s − 2.97·29-s − 0.359·31-s − 0.696·33-s + 0.986·37-s + 0.609·43-s + 0.298·45-s − 1.16·47-s − 1.71·49-s − 3.36·51-s + 0.539·55-s + 1.05·57-s + 0.260·59-s + 0.733·67-s − 3.37·69-s − 0.237·71-s − 1.87·73-s + 0.230·75-s + ⋯ |
Λ(s)=(=(1982464s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(1982464s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
1982464
= 214⋅112
|
Sign: |
1
|
Analytic conductor: |
126.403 |
Root analytic conductor: |
3.35304 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
2
|
Selberg data: |
(4, 1982464, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 11 | C1 | (1+T)2 |
good | 3 | D4 | 1−2T+5T2−2pT3+p2T4 |
| 5 | D4 | 1+2T+3T2+2pT3+p2T4 |
| 7 | C22 | 1+12T2+p2T4 |
| 13 | C22 | 1+8T2+p2T4 |
| 17 | D4 | 1+12T+4pT2+12pT3+p2T4 |
| 19 | D4 | 1−4T+40T2−4pT3+p2T4 |
| 23 | D4 | 1+14T+93T2+14pT3+p2T4 |
| 29 | C2 | (1+8T+pT2)2 |
| 31 | D4 | 1+2T+13T2+2pT3+p2T4 |
| 37 | D4 | 1−6T+75T2−6pT3+p2T4 |
| 41 | C22 | 1+32T2+p2T4 |
| 43 | D4 | 1−4T+82T2−4pT3+p2T4 |
| 47 | D4 | 1+8T+38T2+8pT3+p2T4 |
| 53 | C22 | 1+98T2+p2T4 |
| 59 | D4 | 1−2T−43T2−2pT3+p2T4 |
| 61 | C22 | 1+90T2+p2T4 |
| 67 | D4 | 1−6T−19T2−6pT3+p2T4 |
| 71 | D4 | 1+2T+93T2+2pT3+p2T4 |
| 73 | D4 | 1+16T+160T2+16pT3+p2T4 |
| 79 | D4 | 1+4T+154T2+4pT3+p2T4 |
| 83 | D4 | 1−28T+354T2−28pT3+p2T4 |
| 89 | D4 | 1+2T+171T2+2pT3+p2T4 |
| 97 | C2 | (1+9T+pT2)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.307792892000514667433720601060, −8.941278534885239021127729197559, −8.323259246311900458736051288468, −8.317775442759805899000068256204, −7.74507549059206434494460567708, −7.62390622147860683081293782265, −7.06866181070146480199960466027, −6.55334978843337743957316088391, −5.96557144008317646980639787980, −5.77572163956453322882330457866, −5.09578898975605732472636407584, −4.47180994629019935382320498234, −4.14875096834245229596544178879, −3.67772654398545225543015562536, −3.30253751061432357148054251435, −2.62960626220228083891303419450, −1.98358057460718470239393544702, −1.96833375484122923003211673218, 0, 0,
1.96833375484122923003211673218, 1.98358057460718470239393544702, 2.62960626220228083891303419450, 3.30253751061432357148054251435, 3.67772654398545225543015562536, 4.14875096834245229596544178879, 4.47180994629019935382320498234, 5.09578898975605732472636407584, 5.77572163956453322882330457866, 5.96557144008317646980639787980, 6.55334978843337743957316088391, 7.06866181070146480199960466027, 7.62390622147860683081293782265, 7.74507549059206434494460567708, 8.317775442759805899000068256204, 8.323259246311900458736051288468, 8.941278534885239021127729197559, 9.307792892000514667433720601060