L(s) = 1 | − 3-s + 9-s + 6·11-s + 3·17-s + 5·19-s + 25-s − 27-s − 6·33-s + 3·41-s + 5·43-s + 2·49-s − 3·51-s − 5·57-s − 12·59-s + 5·67-s − 14·73-s − 75-s + 81-s − 3·89-s − 2·97-s + 6·99-s + 24·107-s + 3·113-s + 14·121-s − 3·123-s + 127-s − 5·129-s + ⋯ |
L(s) = 1 | − 0.577·3-s + 1/3·9-s + 1.80·11-s + 0.727·17-s + 1.14·19-s + 1/5·25-s − 0.192·27-s − 1.04·33-s + 0.468·41-s + 0.762·43-s + 2/7·49-s − 0.420·51-s − 0.662·57-s − 1.56·59-s + 0.610·67-s − 1.63·73-s − 0.115·75-s + 1/9·81-s − 0.317·89-s − 0.203·97-s + 0.603·99-s + 2.32·107-s + 0.282·113-s + 1.27·121-s − 0.270·123-s + 0.0887·127-s − 0.440·129-s + ⋯ |
Λ(s)=(=(2073600s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(2073600s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
2073600
= 210⋅34⋅52
|
Sign: |
1
|
Analytic conductor: |
132.214 |
Root analytic conductor: |
3.39093 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
yes
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 2073600, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
2.352020682 |
L(21) |
≈ |
2.352020682 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.61619072146803180351107274278, −7.32422567621999186181458748318, −6.85278354150625382127638658286, −6.47309432360768562373488257082, −5.94980494712683988441466278632, −5.75692729802251925801362291311, −5.19925930941201698624733331730, −4.63613235656986934692777973760, −4.26783944619574240034166488210, −3.75420866021664331005836601218, −3.27853030806207598860295079984, −2.77551732002357642454342747808, −1.84126909684414982145330054843, −1.30609692143021771033125671673, −0.73193225387404772207120302717,
0.73193225387404772207120302717, 1.30609692143021771033125671673, 1.84126909684414982145330054843, 2.77551732002357642454342747808, 3.27853030806207598860295079984, 3.75420866021664331005836601218, 4.26783944619574240034166488210, 4.63613235656986934692777973760, 5.19925930941201698624733331730, 5.75692729802251925801362291311, 5.94980494712683988441466278632, 6.47309432360768562373488257082, 6.85278354150625382127638658286, 7.32422567621999186181458748318, 7.61619072146803180351107274278