L(s) = 1 | + 3·3-s − 5-s − 3·7-s + 6·9-s + 4·11-s + 4·13-s − 3·15-s + 4·17-s + 4·19-s − 9·21-s + 7·23-s + 9·27-s + 9·29-s − 6·31-s + 12·33-s + 3·35-s + 4·37-s + 12·39-s − 9·41-s − 4·43-s − 6·45-s + 3·47-s + 7·49-s + 12·51-s + 12·53-s − 4·55-s + 12·57-s + ⋯ |
L(s) = 1 | + 1.73·3-s − 0.447·5-s − 1.13·7-s + 2·9-s + 1.20·11-s + 1.10·13-s − 0.774·15-s + 0.970·17-s + 0.917·19-s − 1.96·21-s + 1.45·23-s + 1.73·27-s + 1.67·29-s − 1.07·31-s + 2.08·33-s + 0.507·35-s + 0.657·37-s + 1.92·39-s − 1.40·41-s − 0.609·43-s − 0.894·45-s + 0.437·47-s + 49-s + 1.68·51-s + 1.64·53-s − 0.539·55-s + 1.58·57-s + ⋯ |
Λ(s)=(=(2073600s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(2073600s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
2073600
= 210⋅34⋅52
|
Sign: |
1
|
Analytic conductor: |
132.214 |
Root analytic conductor: |
3.39093 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 2073600, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
5.188735839 |
L(21) |
≈ |
5.188735839 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | C2 | 1−pT+pT2 |
| 5 | C2 | 1+T+T2 |
good | 7 | C22 | 1+3T+2T2+3pT3+p2T4 |
| 11 | C22 | 1−4T+5T2−4pT3+p2T4 |
| 13 | C22 | 1−4T+3T2−4pT3+p2T4 |
| 17 | C2 | (1−2T+pT2)2 |
| 19 | C2 | (1−2T+pT2)2 |
| 23 | C22 | 1−7T+26T2−7pT3+p2T4 |
| 29 | C22 | 1−9T+52T2−9pT3+p2T4 |
| 31 | C22 | 1+6T+5T2+6pT3+p2T4 |
| 37 | C2 | (1−2T+pT2)2 |
| 41 | C22 | 1+9T+40T2+9pT3+p2T4 |
| 43 | C22 | 1+4T−27T2+4pT3+p2T4 |
| 47 | C22 | 1−3T−38T2−3pT3+p2T4 |
| 53 | C2 | (1−6T+pT2)2 |
| 59 | C22 | 1−6T−23T2−6pT3+p2T4 |
| 61 | C2 | (1−14T+pT2)(1+T+pT2) |
| 67 | C22 | 1+3T−58T2+3pT3+p2T4 |
| 71 | C2 | (1+pT2)2 |
| 73 | C2 | (1−8T+pT2)2 |
| 79 | C22 | 1+10T+21T2+10pT3+p2T4 |
| 83 | C22 | 1+7T−34T2+7pT3+p2T4 |
| 89 | C2 | (1−T+pT2)2 |
| 97 | C2 | (1−19T+pT2)(1+5T+pT2) |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.711676928177112821308923450659, −9.286516392215275375626881020447, −8.820509884844381138709402753007, −8.684205340604873195326364701413, −8.077001323888815233106077750829, −8.034347358198727872612474359148, −7.09647897740824745320782206073, −7.03247170236136401176869984337, −6.77301527900561703522936967243, −6.20910172218835029345130070436, −5.48529482331468642891240993658, −5.25545604249761292761246106319, −4.34169950456451886517474604303, −3.99332336757437231258778983069, −3.49435726826145050355321227370, −3.36095979141425679052665092176, −2.84595659644318422784676185891, −2.27032257874278009754569112778, −1.24681582128021905837638373273, −1.02074679397857580838969339398,
1.02074679397857580838969339398, 1.24681582128021905837638373273, 2.27032257874278009754569112778, 2.84595659644318422784676185891, 3.36095979141425679052665092176, 3.49435726826145050355321227370, 3.99332336757437231258778983069, 4.34169950456451886517474604303, 5.25545604249761292761246106319, 5.48529482331468642891240993658, 6.20910172218835029345130070436, 6.77301527900561703522936967243, 7.03247170236136401176869984337, 7.09647897740824745320782206073, 8.034347358198727872612474359148, 8.077001323888815233106077750829, 8.684205340604873195326364701413, 8.820509884844381138709402753007, 9.286516392215275375626881020447, 9.711676928177112821308923450659