L(s) = 1 | + 3·3-s + 5-s + 4·7-s + 6·9-s − 11-s + 3·15-s − 2·17-s + 14·19-s + 12·21-s − 6·23-s + 9·27-s + 2·29-s + 10·31-s − 3·33-s + 4·35-s + 16·37-s − 5·41-s − 5·43-s + 6·45-s + 4·47-s + 7·49-s − 6·51-s − 20·53-s − 55-s + 42·57-s + 9·59-s + 10·61-s + ⋯ |
L(s) = 1 | + 1.73·3-s + 0.447·5-s + 1.51·7-s + 2·9-s − 0.301·11-s + 0.774·15-s − 0.485·17-s + 3.21·19-s + 2.61·21-s − 1.25·23-s + 1.73·27-s + 0.371·29-s + 1.79·31-s − 0.522·33-s + 0.676·35-s + 2.63·37-s − 0.780·41-s − 0.762·43-s + 0.894·45-s + 0.583·47-s + 49-s − 0.840·51-s − 2.74·53-s − 0.134·55-s + 5.56·57-s + 1.17·59-s + 1.28·61-s + ⋯ |
Λ(s)=(=(2073600s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(2073600s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
2073600
= 210⋅34⋅52
|
Sign: |
1
|
Analytic conductor: |
132.214 |
Root analytic conductor: |
3.39093 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 2073600, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
7.240154738 |
L(21) |
≈ |
7.240154738 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | C2 | 1−pT+pT2 |
| 5 | C2 | 1−T+T2 |
good | 7 | C2 | (1−5T+pT2)(1+T+pT2) |
| 11 | C22 | 1+T−10T2+pT3+p2T4 |
| 13 | C22 | 1−pT2+p2T4 |
| 17 | C2 | (1+T+pT2)2 |
| 19 | C2 | (1−7T+pT2)2 |
| 23 | C22 | 1+6T+13T2+6pT3+p2T4 |
| 29 | C22 | 1−2T−25T2−2pT3+p2T4 |
| 31 | C22 | 1−10T+69T2−10pT3+p2T4 |
| 37 | C2 | (1−8T+pT2)2 |
| 41 | C22 | 1+5T−16T2+5pT3+p2T4 |
| 43 | C2 | (1−8T+pT2)(1+13T+pT2) |
| 47 | C22 | 1−4T−31T2−4pT3+p2T4 |
| 53 | C2 | (1+10T+pT2)2 |
| 59 | C22 | 1−9T+22T2−9pT3+p2T4 |
| 61 | C22 | 1−10T+39T2−10pT3+p2T4 |
| 67 | C22 | 1+3T−58T2+3pT3+p2T4 |
| 71 | C2 | (1−6T+pT2)2 |
| 73 | C2 | (1+11T+pT2)2 |
| 79 | C22 | 1−10T+21T2−10pT3+p2T4 |
| 83 | C22 | 1+4T−67T2+4pT3+p2T4 |
| 89 | C2 | (1+18T+pT2)2 |
| 97 | C22 | 1+7T−48T2+7pT3+p2T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.798351062923126448121131704690, −9.535848300184255122605227320524, −8.712148427351964475771060359653, −8.508959988498463799152126065969, −8.087847702906179405575879192321, −7.917147713502018798668098894394, −7.37913611746541974496243430497, −7.30198898408694589929224545003, −6.51045819457831156908692603978, −6.06955489432897134233643096259, −5.46459458287792361184142916905, −5.08613778708341914565026245301, −4.45729376076612660939166826063, −4.39974970225123159878759651307, −3.53825745495048976239772471053, −3.13773298847982114725143311162, −2.55526421771305718533387832471, −2.28504155336601607978579438023, −1.28364590297471768186510535734, −1.27146389956915775190390834897,
1.27146389956915775190390834897, 1.28364590297471768186510535734, 2.28504155336601607978579438023, 2.55526421771305718533387832471, 3.13773298847982114725143311162, 3.53825745495048976239772471053, 4.39974970225123159878759651307, 4.45729376076612660939166826063, 5.08613778708341914565026245301, 5.46459458287792361184142916905, 6.06955489432897134233643096259, 6.51045819457831156908692603978, 7.30198898408694589929224545003, 7.37913611746541974496243430497, 7.917147713502018798668098894394, 8.087847702906179405575879192321, 8.508959988498463799152126065969, 8.712148427351964475771060359653, 9.535848300184255122605227320524, 9.798351062923126448121131704690