L(s) = 1 | + 10·5-s + 104·13-s + 132·17-s + 75·25-s − 92·29-s − 48·37-s + 144·41-s − 346·49-s − 124·53-s − 380·61-s + 1.04e3·65-s + 2.15e3·73-s + 1.32e3·85-s − 2.23e3·89-s + 1.66e3·97-s − 540·101-s + 3.49e3·109-s − 1.76e3·113-s + 398·121-s + 500·125-s + 127-s + 131-s + 137-s + 139-s − 920·145-s + 149-s + 151-s + ⋯ |
L(s) = 1 | + 0.894·5-s + 2.21·13-s + 1.88·17-s + 3/5·25-s − 0.589·29-s − 0.213·37-s + 0.548·41-s − 1.00·49-s − 0.321·53-s − 0.797·61-s + 1.98·65-s + 3.45·73-s + 1.68·85-s − 2.65·89-s + 1.74·97-s − 0.532·101-s + 3.06·109-s − 1.46·113-s + 0.299·121-s + 0.357·125-s + 0.000698·127-s + 0.000666·131-s + 0.000623·137-s + 0.000610·139-s − 0.526·145-s + 0.000549·149-s + 0.000538·151-s + ⋯ |
Λ(s)=(=(2073600s/2ΓC(s)2L(s)Λ(4−s)
Λ(s)=(=(2073600s/2ΓC(s+3/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
2073600
= 210⋅34⋅52
|
Sign: |
1
|
Analytic conductor: |
7218.66 |
Root analytic conductor: |
9.21752 |
Motivic weight: |
3 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 2073600, ( :3/2,3/2), 1)
|
Particular Values
L(2) |
≈ |
5.968505831 |
L(21) |
≈ |
5.968505831 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | | 1 |
| 5 | C1 | (1−pT)2 |
good | 7 | C22 | 1+346T2+p6T4 |
| 11 | C22 | 1−398T2+p6T4 |
| 13 | C2 | (1−4pT+p3T2)2 |
| 17 | C2 | (1−66T+p3T2)2 |
| 19 | C2 | (1+p3T2)2 |
| 23 | C22 | 1+22974T2+p6T4 |
| 29 | C2 | (1+46T+p3T2)2 |
| 31 | C22 | 1−7058T2+p6T4 |
| 37 | C2 | (1+24T+p3T2)2 |
| 41 | C2 | (1−72T+p3T2)2 |
| 43 | C2 | (1+p3T2)2 |
| 47 | C22 | 1+97486T2+p6T4 |
| 53 | C2 | (1+62T+p3T2)2 |
| 59 | C22 | 1+353298T2+p6T4 |
| 61 | C2 | (1+190T+p3T2)2 |
| 67 | C22 | 1+1766T2+p6T4 |
| 71 | C22 | 1+322782T2+p6T4 |
| 73 | C2 | (1−1078T+p3T2)2 |
| 79 | C22 | 1+266638T2+p6T4 |
| 83 | C22 | 1+543814T2+p6T4 |
| 89 | C2 | (1+1116T+p3T2)2 |
| 97 | C2 | (1−834T+p3T2)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.292408489467636932695143633122, −9.094074067100686678810221388771, −8.434165868490913458985467548450, −8.333862725516490303294986211629, −7.64658497517380748147937196771, −7.59383158208400771342068979637, −6.65282927931518761678220750989, −6.55991780345456703010106489804, −5.98380194938409960625172545185, −5.76319296250611737459743097658, −5.28014519735133870496154064321, −4.95423108890951503159742496235, −4.08652211306604070328189083540, −3.84065923310939226015173632909, −3.11029629006701676661297624103, −3.08980966966120736478202463856, −2.03099962148204467376287099386, −1.64130278522732706370938916534, −1.08737333887223422561925363929, −0.61870669156209468842811600692,
0.61870669156209468842811600692, 1.08737333887223422561925363929, 1.64130278522732706370938916534, 2.03099962148204467376287099386, 3.08980966966120736478202463856, 3.11029629006701676661297624103, 3.84065923310939226015173632909, 4.08652211306604070328189083540, 4.95423108890951503159742496235, 5.28014519735133870496154064321, 5.76319296250611737459743097658, 5.98380194938409960625172545185, 6.55991780345456703010106489804, 6.65282927931518761678220750989, 7.59383158208400771342068979637, 7.64658497517380748147937196771, 8.333862725516490303294986211629, 8.434165868490913458985467548450, 9.094074067100686678810221388771, 9.292408489467636932695143633122