Properties

Label 4-1440e2-1.1-c3e2-0-11
Degree $4$
Conductor $2073600$
Sign $1$
Analytic cond. $7218.66$
Root an. cond. $9.21752$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 10·5-s + 104·13-s + 132·17-s + 75·25-s − 92·29-s − 48·37-s + 144·41-s − 346·49-s − 124·53-s − 380·61-s + 1.04e3·65-s + 2.15e3·73-s + 1.32e3·85-s − 2.23e3·89-s + 1.66e3·97-s − 540·101-s + 3.49e3·109-s − 1.76e3·113-s + 398·121-s + 500·125-s + 127-s + 131-s + 137-s + 139-s − 920·145-s + 149-s + 151-s + ⋯
L(s)  = 1  + 0.894·5-s + 2.21·13-s + 1.88·17-s + 3/5·25-s − 0.589·29-s − 0.213·37-s + 0.548·41-s − 1.00·49-s − 0.321·53-s − 0.797·61-s + 1.98·65-s + 3.45·73-s + 1.68·85-s − 2.65·89-s + 1.74·97-s − 0.532·101-s + 3.06·109-s − 1.46·113-s + 0.299·121-s + 0.357·125-s + 0.000698·127-s + 0.000666·131-s + 0.000623·137-s + 0.000610·139-s − 0.526·145-s + 0.000549·149-s + 0.000538·151-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2073600 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2073600 ^{s/2} \, \Gamma_{\C}(s+3/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(2073600\)    =    \(2^{10} \cdot 3^{4} \cdot 5^{2}\)
Sign: $1$
Analytic conductor: \(7218.66\)
Root analytic conductor: \(9.21752\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 2073600,\ (\ :3/2, 3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(5.968505831\)
\(L(\frac12)\) \(\approx\) \(5.968505831\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5$C_1$ \( ( 1 - p T )^{2} \)
good7$C_2^2$ \( 1 + 346 T^{2} + p^{6} T^{4} \)
11$C_2^2$ \( 1 - 398 T^{2} + p^{6} T^{4} \)
13$C_2$ \( ( 1 - 4 p T + p^{3} T^{2} )^{2} \)
17$C_2$ \( ( 1 - 66 T + p^{3} T^{2} )^{2} \)
19$C_2$ \( ( 1 + p^{3} T^{2} )^{2} \)
23$C_2^2$ \( 1 + 22974 T^{2} + p^{6} T^{4} \)
29$C_2$ \( ( 1 + 46 T + p^{3} T^{2} )^{2} \)
31$C_2^2$ \( 1 - 7058 T^{2} + p^{6} T^{4} \)
37$C_2$ \( ( 1 + 24 T + p^{3} T^{2} )^{2} \)
41$C_2$ \( ( 1 - 72 T + p^{3} T^{2} )^{2} \)
43$C_2$ \( ( 1 + p^{3} T^{2} )^{2} \)
47$C_2^2$ \( 1 + 97486 T^{2} + p^{6} T^{4} \)
53$C_2$ \( ( 1 + 62 T + p^{3} T^{2} )^{2} \)
59$C_2^2$ \( 1 + 353298 T^{2} + p^{6} T^{4} \)
61$C_2$ \( ( 1 + 190 T + p^{3} T^{2} )^{2} \)
67$C_2^2$ \( 1 + 1766 T^{2} + p^{6} T^{4} \)
71$C_2^2$ \( 1 + 322782 T^{2} + p^{6} T^{4} \)
73$C_2$ \( ( 1 - 1078 T + p^{3} T^{2} )^{2} \)
79$C_2^2$ \( 1 + 266638 T^{2} + p^{6} T^{4} \)
83$C_2^2$ \( 1 + 543814 T^{2} + p^{6} T^{4} \)
89$C_2$ \( ( 1 + 1116 T + p^{3} T^{2} )^{2} \)
97$C_2$ \( ( 1 - 834 T + p^{3} T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.292408489467636932695143633122, −9.094074067100686678810221388771, −8.434165868490913458985467548450, −8.333862725516490303294986211629, −7.64658497517380748147937196771, −7.59383158208400771342068979637, −6.65282927931518761678220750989, −6.55991780345456703010106489804, −5.98380194938409960625172545185, −5.76319296250611737459743097658, −5.28014519735133870496154064321, −4.95423108890951503159742496235, −4.08652211306604070328189083540, −3.84065923310939226015173632909, −3.11029629006701676661297624103, −3.08980966966120736478202463856, −2.03099962148204467376287099386, −1.64130278522732706370938916534, −1.08737333887223422561925363929, −0.61870669156209468842811600692, 0.61870669156209468842811600692, 1.08737333887223422561925363929, 1.64130278522732706370938916534, 2.03099962148204467376287099386, 3.08980966966120736478202463856, 3.11029629006701676661297624103, 3.84065923310939226015173632909, 4.08652211306604070328189083540, 4.95423108890951503159742496235, 5.28014519735133870496154064321, 5.76319296250611737459743097658, 5.98380194938409960625172545185, 6.55991780345456703010106489804, 6.65282927931518761678220750989, 7.59383158208400771342068979637, 7.64658497517380748147937196771, 8.333862725516490303294986211629, 8.434165868490913458985467548450, 9.094074067100686678810221388771, 9.292408489467636932695143633122

Graph of the $Z$-function along the critical line