L(s) = 1 | − 2·7-s + 9-s − 2·17-s + 2·19-s − 2·23-s − 2·29-s + 2·47-s + 49-s + 2·53-s − 2·63-s + 2·71-s − 2·79-s − 2·83-s − 2·89-s − 2·109-s + 2·113-s + 4·119-s + 121-s + 127-s + 131-s − 4·133-s + 137-s + 139-s + 149-s + 151-s − 2·153-s + 157-s + ⋯ |
L(s) = 1 | − 2·7-s + 9-s − 2·17-s + 2·19-s − 2·23-s − 2·29-s + 2·47-s + 49-s + 2·53-s − 2·63-s + 2·71-s − 2·79-s − 2·83-s − 2·89-s − 2·109-s + 2·113-s + 4·119-s + 121-s + 127-s + 131-s − 4·133-s + 137-s + 139-s + 149-s + 151-s − 2·153-s + 157-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 21904 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 21904 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.3684437083\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.3684437083\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.49148832149289409247800683737, −13.10816457337357686041792780832, −12.43625305431146567598223854948, −12.38211825179779823233357558045, −11.37649815088232660667564705338, −11.23585659445774750887200017992, −10.19320403310866793307351058503, −9.990264392653704431458007765550, −9.522405592957802838890433163166, −9.141281680914141676207393897133, −8.444784212317855955232376186194, −7.56795461850848674019017603429, −6.94968605451004120504551546434, −6.89050957330215446206173448352, −5.77021853794458276231113710756, −5.69019913107289534205610998386, −4.27714347876596393041059830264, −3.95290976747288843243538632860, −3.09928043927083506759952653755, −2.08628502080588857118603629212,
2.08628502080588857118603629212, 3.09928043927083506759952653755, 3.95290976747288843243538632860, 4.27714347876596393041059830264, 5.69019913107289534205610998386, 5.77021853794458276231113710756, 6.89050957330215446206173448352, 6.94968605451004120504551546434, 7.56795461850848674019017603429, 8.444784212317855955232376186194, 9.141281680914141676207393897133, 9.522405592957802838890433163166, 9.990264392653704431458007765550, 10.19320403310866793307351058503, 11.23585659445774750887200017992, 11.37649815088232660667564705338, 12.38211825179779823233357558045, 12.43625305431146567598223854948, 13.10816457337357686041792780832, 13.49148832149289409247800683737