Properties

Label 4-14e4-1.1-c13e2-0-1
Degree $4$
Conductor $38416$
Sign $1$
Analytic cond. $44172.5$
Root an. cond. $14.4973$
Motivic weight $13$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 468·3-s − 5.62e4·5-s + 1.59e6·9-s + 6.39e6·11-s + 3.03e7·13-s + 2.63e7·15-s − 4.31e7·17-s + 3.65e8·19-s + 5.72e7·23-s + 1.22e9·25-s − 2.13e9·27-s − 9.28e7·29-s + 5.68e9·31-s − 2.99e9·33-s + 1.88e9·37-s − 1.42e10·39-s − 1.46e10·41-s − 5.37e10·43-s − 8.96e10·45-s − 1.01e11·47-s + 2.01e10·51-s − 2.78e11·53-s − 3.59e11·55-s − 1.70e11·57-s − 5.95e10·59-s + 2.74e10·61-s − 1.70e12·65-s + ⋯
L(s)  = 1  − 0.370·3-s − 1.60·5-s + 9-s + 1.08·11-s + 1.74·13-s + 0.596·15-s − 0.433·17-s + 1.78·19-s + 0.0806·23-s + 25-s − 1.06·27-s − 0.0289·29-s + 1.14·31-s − 0.403·33-s + 0.120·37-s − 0.647·39-s − 0.482·41-s − 1.29·43-s − 1.60·45-s − 1.37·47-s + 0.160·51-s − 1.72·53-s − 1.75·55-s − 0.659·57-s − 0.183·59-s + 0.0683·61-s − 2.81·65-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 38416 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(14-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 38416 ^{s/2} \, \Gamma_{\C}(s+13/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(38416\)    =    \(2^{4} \cdot 7^{4}\)
Sign: $1$
Analytic conductor: \(44172.5\)
Root analytic conductor: \(14.4973\)
Motivic weight: \(13\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 38416,\ (\ :13/2, 13/2),\ 1)\)

Particular Values

\(L(7)\) \(\approx\) \(1.976972070\)
\(L(\frac12)\) \(\approx\) \(1.976972070\)
\(L(\frac{15}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
7 \( 1 \)
good3$C_2^2$ \( 1 + 52 p^{2} T - 16979 p^{4} T^{2} + 52 p^{15} T^{3} + p^{26} T^{4} \)
5$C_2^2$ \( 1 + 56214 T + 1939310671 T^{2} + 56214 p^{13} T^{3} + p^{26} T^{4} \)
11$C_2^2$ \( 1 - 581580 p T + 52923625789 p^{2} T^{2} - 581580 p^{14} T^{3} + p^{26} T^{4} \)
13$C_2$ \( ( 1 - 15199742 T + p^{13} T^{2} )^{2} \)
17$C_2^2$ \( 1 + 43114194 T - 8045744308636301 T^{2} + 43114194 p^{13} T^{3} + p^{26} T^{4} \)
19$C_2^2$ \( 1 - 365115484 T + 91256333194297197 T^{2} - 365115484 p^{13} T^{3} + p^{26} T^{4} \)
23$C_2^2$ \( 1 - 57226824 T - 500761452551340407 T^{2} - 57226824 p^{13} T^{3} + p^{26} T^{4} \)
29$C_2$ \( ( 1 + 46418994 T + p^{13} T^{2} )^{2} \)
31$C_2^2$ \( 1 - 5682185824 T + 7869689441021516385 T^{2} - 5682185824 p^{13} T^{3} + p^{26} T^{4} \)
37$C_2^2$ \( 1 - 1887185098 T - \)\(24\!\cdots\!93\)\( T^{2} - 1887185098 p^{13} T^{3} + p^{26} T^{4} \)
41$C_2$ \( ( 1 + 7336802934 T + p^{13} T^{2} )^{2} \)
43$C_2$ \( ( 1 + 26886674980 T + p^{13} T^{2} )^{2} \)
47$C_2^2$ \( 1 + 101839834224 T + \)\(49\!\cdots\!49\)\( T^{2} + 101839834224 p^{13} T^{3} + p^{26} T^{4} \)
53$C_2^2$ \( 1 + 278731884294 T + \)\(51\!\cdots\!63\)\( T^{2} + 278731884294 p^{13} T^{3} + p^{26} T^{4} \)
59$C_2^2$ \( 1 + 59573945772 T - \)\(10\!\cdots\!95\)\( T^{2} + 59573945772 p^{13} T^{3} + p^{26} T^{4} \)
61$C_2^2$ \( 1 - 27484470418 T - \)\(16\!\cdots\!57\)\( T^{2} - 27484470418 p^{13} T^{3} + p^{26} T^{4} \)
67$C_2^2$ \( 1 + 784410054932 T + \)\(67\!\cdots\!37\)\( T^{2} + 784410054932 p^{13} T^{3} + p^{26} T^{4} \)
71$C_2$ \( ( 1 + 360365227992 T + p^{13} T^{2} )^{2} \)
73$C_2^2$ \( 1 - 1592635413718 T + \)\(86\!\cdots\!91\)\( T^{2} - 1592635413718 p^{13} T^{3} + p^{26} T^{4} \)
79$C_2^2$ \( 1 - 23161184752 T - \)\(46\!\cdots\!35\)\( T^{2} - 23161184752 p^{13} T^{3} + p^{26} T^{4} \)
83$C_2$ \( ( 1 - 2050158110436 T + p^{13} T^{2} )^{2} \)
89$C_2^2$ \( 1 - 3485391237126 T - \)\(98\!\cdots\!93\)\( T^{2} - 3485391237126 p^{13} T^{3} + p^{26} T^{4} \)
97$C_2$ \( ( 1 - 6706667416802 T + p^{13} T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.39175975959297282209815035651, −10.05772979942860355645338792731, −9.260078736914698214567355507465, −9.100742968732378391027613994037, −8.321611803711677235152967810275, −7.77922641591313266127960166255, −7.72368874479589343267241630478, −6.81847520713792590062817560035, −6.53163629025362579850982607400, −6.13415146708623202929821027791, −5.21417823022646221929437995595, −4.77416998538238980650320505853, −4.19838810776529131789834813735, −3.65620849639025240218292073302, −3.52214098308492647886991825373, −2.87717758063919987927101152932, −1.60527647060925818743311800377, −1.47284035229354196644291753345, −0.887892527940874551558263052907, −0.32237145047148958660329505608, 0.32237145047148958660329505608, 0.887892527940874551558263052907, 1.47284035229354196644291753345, 1.60527647060925818743311800377, 2.87717758063919987927101152932, 3.52214098308492647886991825373, 3.65620849639025240218292073302, 4.19838810776529131789834813735, 4.77416998538238980650320505853, 5.21417823022646221929437995595, 6.13415146708623202929821027791, 6.53163629025362579850982607400, 6.81847520713792590062817560035, 7.72368874479589343267241630478, 7.77922641591313266127960166255, 8.321611803711677235152967810275, 9.100742968732378391027613994037, 9.260078736914698214567355507465, 10.05772979942860355645338792731, 10.39175975959297282209815035651

Graph of the $Z$-function along the critical line