L(s) = 1 | − 468·3-s − 5.62e4·5-s + 1.59e6·9-s + 6.39e6·11-s + 3.03e7·13-s + 2.63e7·15-s − 4.31e7·17-s + 3.65e8·19-s + 5.72e7·23-s + 1.22e9·25-s − 2.13e9·27-s − 9.28e7·29-s + 5.68e9·31-s − 2.99e9·33-s + 1.88e9·37-s − 1.42e10·39-s − 1.46e10·41-s − 5.37e10·43-s − 8.96e10·45-s − 1.01e11·47-s + 2.01e10·51-s − 2.78e11·53-s − 3.59e11·55-s − 1.70e11·57-s − 5.95e10·59-s + 2.74e10·61-s − 1.70e12·65-s + ⋯ |
L(s) = 1 | − 0.370·3-s − 1.60·5-s + 9-s + 1.08·11-s + 1.74·13-s + 0.596·15-s − 0.433·17-s + 1.78·19-s + 0.0806·23-s + 25-s − 1.06·27-s − 0.0289·29-s + 1.14·31-s − 0.403·33-s + 0.120·37-s − 0.647·39-s − 0.482·41-s − 1.29·43-s − 1.60·45-s − 1.37·47-s + 0.160·51-s − 1.72·53-s − 1.75·55-s − 0.659·57-s − 0.183·59-s + 0.0683·61-s − 2.81·65-s + ⋯ |
Λ(s)=(=(38416s/2ΓC(s)2L(s)Λ(14−s)
Λ(s)=(=(38416s/2ΓC(s+13/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
38416
= 24⋅74
|
Sign: |
1
|
Analytic conductor: |
44172.5 |
Root analytic conductor: |
14.4973 |
Motivic weight: |
13 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 38416, ( :13/2,13/2), 1)
|
Particular Values
L(7) |
≈ |
1.976972070 |
L(21) |
≈ |
1.976972070 |
L(215) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 7 | | 1 |
good | 3 | C22 | 1+52p2T−16979p4T2+52p15T3+p26T4 |
| 5 | C22 | 1+56214T+1939310671T2+56214p13T3+p26T4 |
| 11 | C22 | 1−581580pT+52923625789p2T2−581580p14T3+p26T4 |
| 13 | C2 | (1−15199742T+p13T2)2 |
| 17 | C22 | 1+43114194T−8045744308636301T2+43114194p13T3+p26T4 |
| 19 | C22 | 1−365115484T+91256333194297197T2−365115484p13T3+p26T4 |
| 23 | C22 | 1−57226824T−500761452551340407T2−57226824p13T3+p26T4 |
| 29 | C2 | (1+46418994T+p13T2)2 |
| 31 | C22 | 1−5682185824T+7869689441021516385T2−5682185824p13T3+p26T4 |
| 37 | C22 | 1−1887185098T−24⋯93T2−1887185098p13T3+p26T4 |
| 41 | C2 | (1+7336802934T+p13T2)2 |
| 43 | C2 | (1+26886674980T+p13T2)2 |
| 47 | C22 | 1+101839834224T+49⋯49T2+101839834224p13T3+p26T4 |
| 53 | C22 | 1+278731884294T+51⋯63T2+278731884294p13T3+p26T4 |
| 59 | C22 | 1+59573945772T−10⋯95T2+59573945772p13T3+p26T4 |
| 61 | C22 | 1−27484470418T−16⋯57T2−27484470418p13T3+p26T4 |
| 67 | C22 | 1+784410054932T+67⋯37T2+784410054932p13T3+p26T4 |
| 71 | C2 | (1+360365227992T+p13T2)2 |
| 73 | C22 | 1−1592635413718T+86⋯91T2−1592635413718p13T3+p26T4 |
| 79 | C22 | 1−23161184752T−46⋯35T2−23161184752p13T3+p26T4 |
| 83 | C2 | (1−2050158110436T+p13T2)2 |
| 89 | C22 | 1−3485391237126T−98⋯93T2−3485391237126p13T3+p26T4 |
| 97 | C2 | (1−6706667416802T+p13T2)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.39175975959297282209815035651, −10.05772979942860355645338792731, −9.260078736914698214567355507465, −9.100742968732378391027613994037, −8.321611803711677235152967810275, −7.77922641591313266127960166255, −7.72368874479589343267241630478, −6.81847520713792590062817560035, −6.53163629025362579850982607400, −6.13415146708623202929821027791, −5.21417823022646221929437995595, −4.77416998538238980650320505853, −4.19838810776529131789834813735, −3.65620849639025240218292073302, −3.52214098308492647886991825373, −2.87717758063919987927101152932, −1.60527647060925818743311800377, −1.47284035229354196644291753345, −0.887892527940874551558263052907, −0.32237145047148958660329505608,
0.32237145047148958660329505608, 0.887892527940874551558263052907, 1.47284035229354196644291753345, 1.60527647060925818743311800377, 2.87717758063919987927101152932, 3.52214098308492647886991825373, 3.65620849639025240218292073302, 4.19838810776529131789834813735, 4.77416998538238980650320505853, 5.21417823022646221929437995595, 6.13415146708623202929821027791, 6.53163629025362579850982607400, 6.81847520713792590062817560035, 7.72368874479589343267241630478, 7.77922641591313266127960166255, 8.321611803711677235152967810275, 9.100742968732378391027613994037, 9.260078736914698214567355507465, 10.05772979942860355645338792731, 10.39175975959297282209815035651