L(s) = 1 | − 4·3-s − 6·5-s + 27·9-s + 12·11-s − 164·13-s + 24·15-s + 30·17-s − 68·19-s − 216·23-s + 125·25-s − 260·27-s + 492·29-s + 112·31-s − 48·33-s − 110·37-s + 656·39-s − 492·41-s − 344·43-s − 162·45-s − 192·47-s − 120·51-s − 558·53-s − 72·55-s + 272·57-s − 540·59-s − 110·61-s + 984·65-s + ⋯ |
L(s) = 1 | − 0.769·3-s − 0.536·5-s + 9-s + 0.328·11-s − 3.49·13-s + 0.413·15-s + 0.428·17-s − 0.821·19-s − 1.95·23-s + 25-s − 1.85·27-s + 3.15·29-s + 0.648·31-s − 0.253·33-s − 0.488·37-s + 2.69·39-s − 1.87·41-s − 1.21·43-s − 0.536·45-s − 0.595·47-s − 0.329·51-s − 1.44·53-s − 0.176·55-s + 0.632·57-s − 1.19·59-s − 0.230·61-s + 1.87·65-s + ⋯ |
Λ(s)=(=(38416s/2ΓC(s)2L(s)Λ(4−s)
Λ(s)=(=(38416s/2ΓC(s+3/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
38416
= 24⋅74
|
Sign: |
1
|
Analytic conductor: |
133.734 |
Root analytic conductor: |
3.40064 |
Motivic weight: |
3 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 38416, ( :3/2,3/2), 1)
|
Particular Values
L(2) |
≈ |
0.2978086248 |
L(21) |
≈ |
0.2978086248 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 7 | | 1 |
good | 3 | C22 | 1+4T−11T2+4p3T3+p6T4 |
| 5 | C22 | 1+6T−89T2+6p3T3+p6T4 |
| 11 | C22 | 1−12T−1187T2−12p3T3+p6T4 |
| 13 | C2 | (1+82T+p3T2)2 |
| 17 | C22 | 1−30T−4013T2−30p3T3+p6T4 |
| 19 | C22 | 1+68T−2235T2+68p3T3+p6T4 |
| 23 | C22 | 1+216T+34489T2+216p3T3+p6T4 |
| 29 | C2 | (1−246T+p3T2)2 |
| 31 | C22 | 1−112T−17247T2−112p3T3+p6T4 |
| 37 | C2 | (1−323T+p3T2)(1+433T+p3T2) |
| 41 | C2 | (1+6pT+p3T2)2 |
| 43 | C2 | (1+4pT+p3T2)2 |
| 47 | C22 | 1+192T−66959T2+192p3T3+p6T4 |
| 53 | C22 | 1+558T+162487T2+558p3T3+p6T4 |
| 59 | C22 | 1+540T+86221T2+540p3T3+p6T4 |
| 61 | C22 | 1+110T−214881T2+110p3T3+p6T4 |
| 67 | C22 | 1+140T−281163T2+140p3T3+p6T4 |
| 71 | C2 | (1+840T+p3T2)2 |
| 73 | C22 | 1−550T−86517T2−550p3T3+p6T4 |
| 79 | C22 | 1−208T−449775T2−208p3T3+p6T4 |
| 83 | C2 | (1−516T+p3T2)2 |
| 89 | C22 | 1−1398T+1249435T2−1398p3T3+p6T4 |
| 97 | C2 | (1−1586T+p3T2)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.10990275456284331313979778812, −11.88053978802689795514574928802, −11.79188901751146939980168353871, −10.54989104233363636548041475150, −10.30662685768885459774046504083, −9.987021935702769805201489248938, −9.595615729319619324015713385917, −8.783763886731685448797685357591, −8.017871226687383828220941146861, −7.72392620067272347833698178259, −7.17032583369822417280083927410, −6.45917709767366171036123246480, −6.31931685194823523962653104055, −4.93372762172154909881859677125, −4.91866246350272275700469118060, −4.45366831255890056571636164624, −3.39910665228630714643905484122, −2.52773375524641331173771060948, −1.68793326661785399715810453616, −0.24248465276623332536090872727,
0.24248465276623332536090872727, 1.68793326661785399715810453616, 2.52773375524641331173771060948, 3.39910665228630714643905484122, 4.45366831255890056571636164624, 4.91866246350272275700469118060, 4.93372762172154909881859677125, 6.31931685194823523962653104055, 6.45917709767366171036123246480, 7.17032583369822417280083927410, 7.72392620067272347833698178259, 8.017871226687383828220941146861, 8.783763886731685448797685357591, 9.595615729319619324015713385917, 9.987021935702769805201489248938, 10.30662685768885459774046504083, 10.54989104233363636548041475150, 11.79188901751146939980168353871, 11.88053978802689795514574928802, 12.10990275456284331313979778812