L(s) = 1 | − 12·3-s + 54·5-s + 243·9-s − 540·11-s + 836·13-s − 648·15-s + 594·17-s + 836·19-s + 4.10e3·23-s + 3.12e3·25-s − 7.02e3·27-s − 1.18e3·29-s + 4.25e3·31-s + 6.48e3·33-s + 298·37-s − 1.00e4·39-s − 3.44e4·41-s − 2.42e4·43-s + 1.31e4·45-s − 1.29e3·47-s − 7.12e3·51-s − 1.94e4·53-s − 2.91e4·55-s − 1.00e4·57-s − 7.66e3·59-s − 3.47e4·61-s + 4.51e4·65-s + ⋯ |
L(s) = 1 | − 0.769·3-s + 0.965·5-s + 9-s − 1.34·11-s + 1.37·13-s − 0.743·15-s + 0.498·17-s + 0.531·19-s + 1.61·23-s + 25-s − 1.85·27-s − 0.262·29-s + 0.795·31-s + 1.03·33-s + 0.0357·37-s − 1.05·39-s − 3.20·41-s − 1.99·43-s + 0.965·45-s − 0.0855·47-s − 0.383·51-s − 0.953·53-s − 1.29·55-s − 0.408·57-s − 0.286·59-s − 1.19·61-s + 1.32·65-s + ⋯ |
Λ(s)=(=(38416s/2ΓC(s)2L(s)Λ(6−s)
Λ(s)=(=(38416s/2ΓC(s+5/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
38416
= 24⋅74
|
Sign: |
1
|
Analytic conductor: |
988.173 |
Root analytic conductor: |
5.60671 |
Motivic weight: |
5 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 38416, ( :5/2,5/2), 1)
|
Particular Values
L(3) |
≈ |
2.188032326 |
L(21) |
≈ |
2.188032326 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 7 | | 1 |
good | 3 | C22 | 1+4pT−11p2T2+4p6T3+p10T4 |
| 5 | C22 | 1−54T−209T2−54p5T3+p10T4 |
| 11 | C22 | 1+540T+130549T2+540p5T3+p10T4 |
| 13 | C2 | (1−418T+p5T2)2 |
| 17 | C22 | 1−594T−1067021T2−594p5T3+p10T4 |
| 19 | C22 | 1−44pT−4923p2T2−44p6T3+p10T4 |
| 23 | C22 | 1−4104T+10406473T2−4104p5T3+p10T4 |
| 29 | C2 | (1+594T+p5T2)2 |
| 31 | C22 | 1−4256T−10515615T2−4256p5T3+p10T4 |
| 37 | C22 | 1−298T−69255153T2−298p5T3+p10T4 |
| 41 | C2 | (1+17226T+p5T2)2 |
| 43 | C2 | (1+12100T+p5T2)2 |
| 47 | C22 | 1+1296T−227665391T2+1296p5T3+p10T4 |
| 53 | C22 | 1+19494T−38179457T2+19494p5T3+p10T4 |
| 59 | C22 | 1+7668T−656126075T2+7668p5T3+p10T4 |
| 61 | C22 | 1+34738T+362132343T2+34738p5T3+p10T4 |
| 67 | C22 | 1+21812T−874361763T2+21812p5T3+p10T4 |
| 71 | C2 | (1+46872T+p5T2)2 |
| 73 | C22 | 1−67562T+2491552251T2−67562p5T3+p10T4 |
| 79 | C22 | 1−76912T+2838399345T2−76912p5T3+p10T4 |
| 83 | C2 | (1+67716T+p5T2)2 |
| 89 | C22 | 1−29754T−4698758933T2−29754p5T3+p10T4 |
| 97 | C2 | (1−122398T+p5T2)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.85119107672026696646535185627, −11.26209083439098568390253517226, −10.87882798990519051768630790944, −10.26348006073767225104631589088, −10.14860774335752357848964180539, −9.503386557880415555607349487656, −8.950271390804328155913123521383, −8.279499185353390168756216445291, −7.87666714272711221776639454973, −6.92526924955320658115343795397, −6.84012529087407548993483271901, −5.93142795273266138445825588925, −5.64245290954351691803255546160, −4.92465214809842891543103173085, −4.68977070612841135500151565035, −3.24102611726558864429364232170, −3.24064691863337616706659543766, −1.79740224768445110230891669265, −1.45734951064192139503349566474, −0.49213098530591072928089558796,
0.49213098530591072928089558796, 1.45734951064192139503349566474, 1.79740224768445110230891669265, 3.24064691863337616706659543766, 3.24102611726558864429364232170, 4.68977070612841135500151565035, 4.92465214809842891543103173085, 5.64245290954351691803255546160, 5.93142795273266138445825588925, 6.84012529087407548993483271901, 6.92526924955320658115343795397, 7.87666714272711221776639454973, 8.279499185353390168756216445291, 8.950271390804328155913123521383, 9.503386557880415555607349487656, 10.14860774335752357848964180539, 10.26348006073767225104631589088, 10.87882798990519051768630790944, 11.26209083439098568390253517226, 11.85119107672026696646535185627