L(s) = 1 | − 228·3-s + 666·5-s + 1.96e4·9-s + 3.04e4·11-s − 6.46e4·13-s − 1.51e5·15-s − 5.90e5·17-s − 3.46e4·19-s − 1.04e6·23-s + 1.95e6·25-s − 1.61e6·27-s + 8.81e6·29-s + 7.40e6·31-s − 6.93e6·33-s − 1.02e7·37-s + 1.47e7·39-s + 3.67e7·41-s − 5.04e5·43-s + 1.31e7·45-s + 4.95e7·47-s + 1.34e8·51-s + 6.63e7·53-s + 2.02e7·55-s + 7.90e6·57-s + 6.15e7·59-s − 3.56e7·61-s − 4.30e7·65-s + ⋯ |
L(s) = 1 | − 1.62·3-s + 0.476·5-s + 9-s + 0.626·11-s − 0.628·13-s − 0.774·15-s − 1.71·17-s − 0.0610·19-s − 0.781·23-s + 25-s − 0.583·27-s + 2.31·29-s + 1.43·31-s − 1.01·33-s − 0.897·37-s + 1.02·39-s + 2.02·41-s − 0.0225·43-s + 0.476·45-s + 1.48·47-s + 2.78·51-s + 1.15·53-s + 0.298·55-s + 0.0992·57-s + 0.661·59-s − 0.329·61-s − 0.299·65-s + ⋯ |
Λ(s)=(=(38416s/2ΓC(s)2L(s)Λ(10−s)
Λ(s)=(=(38416s/2ΓC(s+9/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
38416
= 24⋅74
|
Sign: |
1
|
Analytic conductor: |
10190.3 |
Root analytic conductor: |
10.0472 |
Motivic weight: |
9 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 38416, ( :9/2,9/2), 1)
|
Particular Values
L(5) |
≈ |
1.975654400 |
L(21) |
≈ |
1.975654400 |
L(211) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 7 | | 1 |
good | 3 | C22 | 1+76pT+3589p2T2+76p10T3+p18T4 |
| 5 | C22 | 1−666T−1509569T2−666p9T3+p18T4 |
| 11 | C22 | 1−30420T−1432571291T2−30420p9T3+p18T4 |
| 13 | C2 | (1+32338T+p9T2)2 |
| 17 | C22 | 1+590994T+230686031539T2+590994p9T3+p18T4 |
| 19 | C22 | 1+34676T−321485272803T2+34676p9T3+p18T4 |
| 23 | C22 | 1+1048536T−701724918167T2+1048536p9T3+p18T4 |
| 29 | C2 | (1−4409406T+p9T2)2 |
| 31 | C22 | 1−7401184T+28337902441185T2−7401184p9T3+p18T4 |
| 37 | C22 | 1+10234502T−25216708607073T2+10234502p9T3+p18T4 |
| 41 | C2 | (1−18352746T+p9T2)2 |
| 43 | C2 | (1+252340T+p9T2)2 |
| 47 | C22 | 1−49517136T+1332816284539729T2−49517136p9T3+p18T4 |
| 53 | C22 | 1−66396906T+1108785534570703T2−66396906p9T3+p18T4 |
| 59 | C22 | 1−61523748T−4877824250687435T2−61523748p9T3+p18T4 |
| 61 | C22 | 1+35638622T−10424034714775257T2+35638622p9T3+p18T4 |
| 67 | C22 | 1+181742372T+5823755383891437T2+181742372p9T3+p18T4 |
| 71 | C2 | (1−90904968T+p9T2)2 |
| 73 | C22 | 1−262978678T+10286198374359771T2−262978678p9T3+p18T4 |
| 79 | C22 | 1−116502832T−106278686118598095T2−116502832p9T3+p18T4 |
| 83 | C2 | (1+9563724T+p9T2)2 |
| 89 | C22 | 1+611826714T+23975524256552587T2+611826714p9T3+p18T4 |
| 97 | C2 | (1+259312798T+p9T2)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.92885158683998848690320456234, −10.75335532318475153533060713557, −10.32555116267252232845906795820, −9.642128856924937169747340041343, −9.286018628773007293070383461082, −8.530415950199590885272733694587, −8.263985450927726004990980026538, −7.24746930420000248706995066983, −6.77554037916555869637461693035, −6.49531502461069077966208174344, −5.89160763118829976715389922641, −5.56365806197580868428675299401, −4.65298807266619584120924875624, −4.58635887526713798532705816180, −3.87888115194624231126762499464, −2.65945268162743583615632631211, −2.44863574370038809959705020693, −1.51794658397927554468257978903, −0.64927693097544580724205138325, −0.56630292061632817830660247961,
0.56630292061632817830660247961, 0.64927693097544580724205138325, 1.51794658397927554468257978903, 2.44863574370038809959705020693, 2.65945268162743583615632631211, 3.87888115194624231126762499464, 4.58635887526713798532705816180, 4.65298807266619584120924875624, 5.56365806197580868428675299401, 5.89160763118829976715389922641, 6.49531502461069077966208174344, 6.77554037916555869637461693035, 7.24746930420000248706995066983, 8.263985450927726004990980026538, 8.530415950199590885272733694587, 9.286018628773007293070383461082, 9.642128856924937169747340041343, 10.32555116267252232845906795820, 10.75335532318475153533060713557, 10.92885158683998848690320456234