L(s) = 1 | + 70·3-s − 1.55e3·5-s − 2.44e4·9-s + 6.23e4·11-s − 1.22e5·13-s − 1.08e5·15-s − 7.35e4·17-s − 1.17e6·19-s + 2.26e6·23-s + 1.95e6·25-s − 2.39e6·27-s − 1.92e6·29-s − 2.97e6·31-s + 4.36e6·33-s − 1.34e7·37-s − 8.59e6·39-s + 3.63e7·41-s − 2.19e7·43-s + 3.80e7·45-s + 1.36e6·47-s − 5.15e6·51-s − 1.78e7·53-s − 9.69e7·55-s − 8.19e7·57-s − 2.24e8·59-s + 8.58e7·61-s + 1.90e8·65-s + ⋯ |
L(s) = 1 | + 0.498·3-s − 1.11·5-s − 1.24·9-s + 1.28·11-s − 1.19·13-s − 0.554·15-s − 0.213·17-s − 2.06·19-s + 1.68·23-s + 0.999·25-s − 0.866·27-s − 0.504·29-s − 0.579·31-s + 0.641·33-s − 1.17·37-s − 0.594·39-s + 2.00·41-s − 0.979·43-s + 1.38·45-s + 0.0407·47-s − 0.106·51-s − 0.311·53-s − 1.42·55-s − 1.02·57-s − 2.41·59-s + 0.793·61-s + 1.32·65-s + ⋯ |
Λ(s)=(=(38416s/2ΓC(s)2L(s)Λ(10−s)
Λ(s)=(=(38416s/2ΓC(s+9/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
38416
= 24⋅74
|
Sign: |
1
|
Analytic conductor: |
10190.3 |
Root analytic conductor: |
10.0472 |
Motivic weight: |
9 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
2
|
Selberg data: |
(4, 38416, ( :9/2,9/2), 1)
|
Particular Values
L(5) |
= |
0 |
L(21) |
= |
0 |
L(211) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 7 | | 1 |
good | 3 | D4 | 1−70T+9794pT2−70p9T3+p18T4 |
| 5 | D4 | 1+1554T+92706pT2+1554p9T3+p18T4 |
| 11 | D4 | 1−62388T+5317674102T2−62388p9T3+p18T4 |
| 13 | D4 | 1+122766T+1914771578pT2+122766p9T3+p18T4 |
| 17 | D4 | 1+73584T+138587763294T2+73584p9T3+p18T4 |
| 19 | D4 | 1+61642pT+942609653910T2+61642p10T3+p18T4 |
| 23 | D4 | 1−2262384T+185222048898pT2−2262384p9T3+p18T4 |
| 29 | D4 | 1+1923360T+23001703439382T2+1923360p9T3+p18T4 |
| 31 | D4 | 1+2977884T+31127734980830T2+2977884p9T3+p18T4 |
| 37 | D4 | 1+13418528T+97243912721094T2+13418528p9T3+p18T4 |
| 41 | D4 | 1−36367800T+982922223862366T2−36367800p9T3+p18T4 |
| 43 | D4 | 1+510812pT+1094756328321366T2+510812p10T3+p18T4 |
| 47 | D4 | 1−1362732T+1922701259198590T2−1362732p9T3+p18T4 |
| 53 | D4 | 1+17898612T+1151999595207502T2+17898612p9T3+p18T4 |
| 59 | D4 | 1+224710542T+28856421320644278T2+224710542p9T3+p18T4 |
| 61 | D4 | 1−85847118T+5849816165467562T2−85847118p9T3+p18T4 |
| 67 | D4 | 1−179568872T+37296819148445334T2−179568872p9T3+p18T4 |
| 71 | D4 | 1−231378168T+105070505575629582T2−231378168p9T3+p18T4 |
| 73 | D4 | 1+88098332T+119680894964975046T2+88098332p9T3+p18T4 |
| 79 | D4 | 1+184274184T+157166499568643102T2+184274184p9T3+p18T4 |
| 83 | D4 | 1+624641094T+301231392696541014T2+624641094p9T3+p18T4 |
| 89 | D4 | 1−1574777148T+1271578866761386870T2−1574777148p9T3+p18T4 |
| 97 | D4 | 1+213665984T+1447970079084154398T2+213665984p9T3+p18T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.80066399795008589505527647799, −10.14091044660087991962813309976, −9.200070772756894025760842046587, −9.154581616015641029278759026285, −8.603521711261185184473738615578, −8.265386350283412269303822448623, −7.36792922859511971388564258282, −7.34490328507664341665652425316, −6.34417065966711649662590573915, −6.27693351900523172492996730582, −5.07447128433110407618432012274, −4.88517692049517195264516454909, −3.97733575441991047793881110162, −3.72499992631020569882657971520, −2.94429369847045545386787152619, −2.48693206389944689586303377838, −1.79259757642231931181857536884, −0.927410662063629421622020439513, 0, 0,
0.927410662063629421622020439513, 1.79259757642231931181857536884, 2.48693206389944689586303377838, 2.94429369847045545386787152619, 3.72499992631020569882657971520, 3.97733575441991047793881110162, 4.88517692049517195264516454909, 5.07447128433110407618432012274, 6.27693351900523172492996730582, 6.34417065966711649662590573915, 7.34490328507664341665652425316, 7.36792922859511971388564258282, 8.265386350283412269303822448623, 8.603521711261185184473738615578, 9.154581616015641029278759026285, 9.200070772756894025760842046587, 10.14091044660087991962813309976, 10.80066399795008589505527647799