Properties

Label 4-14e4-1.1-c9e2-0-2
Degree 44
Conductor 3841638416
Sign 11
Analytic cond. 10190.310190.3
Root an. cond. 10.047210.0472
Motivic weight 99
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank 22

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 70·3-s − 1.55e3·5-s − 2.44e4·9-s + 6.23e4·11-s − 1.22e5·13-s − 1.08e5·15-s − 7.35e4·17-s − 1.17e6·19-s + 2.26e6·23-s + 1.95e6·25-s − 2.39e6·27-s − 1.92e6·29-s − 2.97e6·31-s + 4.36e6·33-s − 1.34e7·37-s − 8.59e6·39-s + 3.63e7·41-s − 2.19e7·43-s + 3.80e7·45-s + 1.36e6·47-s − 5.15e6·51-s − 1.78e7·53-s − 9.69e7·55-s − 8.19e7·57-s − 2.24e8·59-s + 8.58e7·61-s + 1.90e8·65-s + ⋯
L(s)  = 1  + 0.498·3-s − 1.11·5-s − 1.24·9-s + 1.28·11-s − 1.19·13-s − 0.554·15-s − 0.213·17-s − 2.06·19-s + 1.68·23-s + 0.999·25-s − 0.866·27-s − 0.504·29-s − 0.579·31-s + 0.641·33-s − 1.17·37-s − 0.594·39-s + 2.00·41-s − 0.979·43-s + 1.38·45-s + 0.0407·47-s − 0.106·51-s − 0.311·53-s − 1.42·55-s − 1.02·57-s − 2.41·59-s + 0.793·61-s + 1.32·65-s + ⋯

Functional equation

Λ(s)=(38416s/2ΓC(s)2L(s)=(Λ(10s)\begin{aligned}\Lambda(s)=\mathstrut & 38416 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(10-s) \end{aligned}
Λ(s)=(38416s/2ΓC(s+9/2)2L(s)=(Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 38416 ^{s/2} \, \Gamma_{\C}(s+9/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}

Invariants

Degree: 44
Conductor: 3841638416    =    24742^{4} \cdot 7^{4}
Sign: 11
Analytic conductor: 10190.310190.3
Root analytic conductor: 10.047210.0472
Motivic weight: 99
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: 22
Selberg data: (4, 38416, ( :9/2,9/2), 1)(4,\ 38416,\ (\ :9/2, 9/2),\ 1)

Particular Values

L(5)L(5) == 00
L(12)L(\frac12) == 00
L(112)L(\frac{11}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppGal(Fp)\Gal(F_p)Fp(T)F_p(T)
bad2 1 1
7 1 1
good3D4D_{4} 170T+9794pT270p9T3+p18T4 1 - 70 T + 9794 p T^{2} - 70 p^{9} T^{3} + p^{18} T^{4}
5D4D_{4} 1+1554T+92706pT2+1554p9T3+p18T4 1 + 1554 T + 92706 p T^{2} + 1554 p^{9} T^{3} + p^{18} T^{4}
11D4D_{4} 162388T+5317674102T262388p9T3+p18T4 1 - 62388 T + 5317674102 T^{2} - 62388 p^{9} T^{3} + p^{18} T^{4}
13D4D_{4} 1+122766T+1914771578pT2+122766p9T3+p18T4 1 + 122766 T + 1914771578 p T^{2} + 122766 p^{9} T^{3} + p^{18} T^{4}
17D4D_{4} 1+73584T+138587763294T2+73584p9T3+p18T4 1 + 73584 T + 138587763294 T^{2} + 73584 p^{9} T^{3} + p^{18} T^{4}
19D4D_{4} 1+61642pT+942609653910T2+61642p10T3+p18T4 1 + 61642 p T + 942609653910 T^{2} + 61642 p^{10} T^{3} + p^{18} T^{4}
23D4D_{4} 12262384T+185222048898pT22262384p9T3+p18T4 1 - 2262384 T + 185222048898 p T^{2} - 2262384 p^{9} T^{3} + p^{18} T^{4}
29D4D_{4} 1+1923360T+23001703439382T2+1923360p9T3+p18T4 1 + 1923360 T + 23001703439382 T^{2} + 1923360 p^{9} T^{3} + p^{18} T^{4}
31D4D_{4} 1+2977884T+31127734980830T2+2977884p9T3+p18T4 1 + 2977884 T + 31127734980830 T^{2} + 2977884 p^{9} T^{3} + p^{18} T^{4}
37D4D_{4} 1+13418528T+97243912721094T2+13418528p9T3+p18T4 1 + 13418528 T + 97243912721094 T^{2} + 13418528 p^{9} T^{3} + p^{18} T^{4}
41D4D_{4} 136367800T+982922223862366T236367800p9T3+p18T4 1 - 36367800 T + 982922223862366 T^{2} - 36367800 p^{9} T^{3} + p^{18} T^{4}
43D4D_{4} 1+510812pT+1094756328321366T2+510812p10T3+p18T4 1 + 510812 p T + 1094756328321366 T^{2} + 510812 p^{10} T^{3} + p^{18} T^{4}
47D4D_{4} 11362732T+1922701259198590T21362732p9T3+p18T4 1 - 1362732 T + 1922701259198590 T^{2} - 1362732 p^{9} T^{3} + p^{18} T^{4}
53D4D_{4} 1+17898612T+1151999595207502T2+17898612p9T3+p18T4 1 + 17898612 T + 1151999595207502 T^{2} + 17898612 p^{9} T^{3} + p^{18} T^{4}
59D4D_{4} 1+224710542T+28856421320644278T2+224710542p9T3+p18T4 1 + 224710542 T + 28856421320644278 T^{2} + 224710542 p^{9} T^{3} + p^{18} T^{4}
61D4D_{4} 185847118T+5849816165467562T285847118p9T3+p18T4 1 - 85847118 T + 5849816165467562 T^{2} - 85847118 p^{9} T^{3} + p^{18} T^{4}
67D4D_{4} 1179568872T+37296819148445334T2179568872p9T3+p18T4 1 - 179568872 T + 37296819148445334 T^{2} - 179568872 p^{9} T^{3} + p^{18} T^{4}
71D4D_{4} 1231378168T+105070505575629582T2231378168p9T3+p18T4 1 - 231378168 T + 105070505575629582 T^{2} - 231378168 p^{9} T^{3} + p^{18} T^{4}
73D4D_{4} 1+88098332T+119680894964975046T2+88098332p9T3+p18T4 1 + 88098332 T + 119680894964975046 T^{2} + 88098332 p^{9} T^{3} + p^{18} T^{4}
79D4D_{4} 1+184274184T+157166499568643102T2+184274184p9T3+p18T4 1 + 184274184 T + 157166499568643102 T^{2} + 184274184 p^{9} T^{3} + p^{18} T^{4}
83D4D_{4} 1+624641094T+301231392696541014T2+624641094p9T3+p18T4 1 + 624641094 T + 301231392696541014 T^{2} + 624641094 p^{9} T^{3} + p^{18} T^{4}
89D4D_{4} 11574777148T+1271578866761386870T21574777148p9T3+p18T4 1 - 1574777148 T + 1271578866761386870 T^{2} - 1574777148 p^{9} T^{3} + p^{18} T^{4}
97D4D_{4} 1+213665984T+1447970079084154398T2+213665984p9T3+p18T4 1 + 213665984 T + 1447970079084154398 T^{2} + 213665984 p^{9} T^{3} + p^{18} T^{4}
show more
show less
   L(s)=p j=14(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−10.80066399795008589505527647799, −10.14091044660087991962813309976, −9.200070772756894025760842046587, −9.154581616015641029278759026285, −8.603521711261185184473738615578, −8.265386350283412269303822448623, −7.36792922859511971388564258282, −7.34490328507664341665652425316, −6.34417065966711649662590573915, −6.27693351900523172492996730582, −5.07447128433110407618432012274, −4.88517692049517195264516454909, −3.97733575441991047793881110162, −3.72499992631020569882657971520, −2.94429369847045545386787152619, −2.48693206389944689586303377838, −1.79259757642231931181857536884, −0.927410662063629421622020439513, 0, 0, 0.927410662063629421622020439513, 1.79259757642231931181857536884, 2.48693206389944689586303377838, 2.94429369847045545386787152619, 3.72499992631020569882657971520, 3.97733575441991047793881110162, 4.88517692049517195264516454909, 5.07447128433110407618432012274, 6.27693351900523172492996730582, 6.34417065966711649662590573915, 7.34490328507664341665652425316, 7.36792922859511971388564258282, 8.265386350283412269303822448623, 8.603521711261185184473738615578, 9.154581616015641029278759026285, 9.200070772756894025760842046587, 10.14091044660087991962813309976, 10.80066399795008589505527647799

Graph of the ZZ-function along the critical line