L(s) = 1 | − 64·4-s − 729·9-s − 120·11-s + 4.09e3·16-s − 1.07e5·19-s + 1.77e5·29-s − 2.40e5·31-s + 4.66e4·36-s − 1.02e6·41-s + 7.68e3·44-s + 1.59e6·49-s + 3.77e6·59-s − 5.43e5·61-s − 2.62e5·64-s − 5.01e6·71-s + 6.85e6·76-s + 1.47e7·79-s + 5.31e5·81-s − 1.13e7·89-s + 8.74e4·99-s + 3.09e7·101-s − 2.79e7·109-s − 1.13e7·116-s − 3.89e7·121-s + 1.54e7·124-s + 127-s + 131-s + ⋯ |
L(s) = 1 | − 1/2·4-s − 1/3·9-s − 0.0271·11-s + 1/4·16-s − 3.58·19-s + 1.34·29-s − 1.45·31-s + 1/6·36-s − 2.31·41-s + 0.0135·44-s + 1.93·49-s + 2.39·59-s − 0.306·61-s − 1/8·64-s − 1.66·71-s + 1.79·76-s + 3.35·79-s + 1/9·81-s − 1.70·89-s + 0.00906·99-s + 2.98·101-s − 2.06·109-s − 0.674·116-s − 1.99·121-s + 0.725·124-s + ⋯ |
Λ(s)=(=(22500s/2ΓC(s)2L(s)Λ(8−s)
Λ(s)=(=(22500s/2ΓC(s+7/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
22500
= 22⋅32⋅54
|
Sign: |
1
|
Analytic conductor: |
2195.64 |
Root analytic conductor: |
6.84527 |
Motivic weight: |
7 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 22500, ( :7/2,7/2), 1)
|
Particular Values
L(4) |
≈ |
0.04511486412 |
L(21) |
≈ |
0.04511486412 |
L(29) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | C2 | 1+p6T2 |
| 3 | C2 | 1+p6T2 |
| 5 | | 1 |
good | 7 | C22 | 1−1593262T2+p14T4 |
| 11 | C2 | (1+60T+p7T2)2 |
| 13 | C22 | 1+72017882T2+p14T4 |
| 17 | C22 | 1−626409502T2+p14T4 |
| 19 | C2 | (1+53564T+p7T2)2 |
| 23 | C22 | 1−6080650894T2+p14T4 |
| 29 | C2 | (1−88554T+p7T2)2 |
| 31 | C2 | (1+120352T+p7T2)2 |
| 37 | C22 | 1+30703611050T2+p14T4 |
| 41 | C2 | (1+510246T+p7T2)2 |
| 43 | C22 | 1−522492572470T2+p14T4 |
| 47 | C22 | 1−416699614p2T2+p14T4 |
| 53 | C22 | 1−2340511297270T2+p14T4 |
| 59 | C2 | (1−1885740T+p7T2)2 |
| 61 | C2 | (1+271690T+p7T2)2 |
| 67 | C22 | 1−10966511900422T2+p14T4 |
| 71 | C2 | (1+2505480T+p7T2)2 |
| 73 | C22 | 1−13365336789838T2+p14T4 |
| 79 | C2 | (1−7354768T+p7T2)2 |
| 83 | C22 | 1−39474570255718T2+p14T4 |
| 89 | C2 | (1+5685162T+p7T2)2 |
| 97 | C22 | 1−97894684984510T2+p14T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.98278587301169367229765565053, −11.47377464616022301050744821196, −10.74783962696890619061605247948, −10.36971350999318702306159097420, −10.18855390185646514100500907918, −9.173077592368046417606235682767, −8.643659432951926488431297602800, −8.608561267472088070993384310798, −7.914274395369269704113067026260, −7.10502438244692577174599222356, −6.48708723227243605919253497021, −6.18347946927772991782764127424, −5.26387778019591580998147894678, −4.83698977910186591106787327839, −3.95050769453963841946478366774, −3.76985407135732910749375646218, −2.52199166568518671393580452347, −2.15007180517046887256470830912, −1.18153489576986631782379282170, −0.06064438411723357706532854012,
0.06064438411723357706532854012, 1.18153489576986631782379282170, 2.15007180517046887256470830912, 2.52199166568518671393580452347, 3.76985407135732910749375646218, 3.95050769453963841946478366774, 4.83698977910186591106787327839, 5.26387778019591580998147894678, 6.18347946927772991782764127424, 6.48708723227243605919253497021, 7.10502438244692577174599222356, 7.914274395369269704113067026260, 8.608561267472088070993384310798, 8.643659432951926488431297602800, 9.173077592368046417606235682767, 10.18855390185646514100500907918, 10.36971350999318702306159097420, 10.74783962696890619061605247948, 11.47377464616022301050744821196, 11.98278587301169367229765565053