L(s) = 1 | − 32·2-s − 162·3-s + 768·4-s + 5.18e3·6-s − 3.16e3·7-s − 1.63e4·8-s + 1.96e4·9-s + 2.70e4·11-s − 1.24e5·12-s − 7.08e4·13-s + 1.01e5·14-s + 3.27e5·16-s − 1.44e5·17-s − 6.29e5·18-s + 1.15e5·19-s + 5.12e5·21-s − 8.66e5·22-s − 7.99e5·23-s + 2.65e6·24-s + 2.26e6·26-s − 2.12e6·27-s − 2.43e6·28-s − 2.08e5·29-s + 6.36e6·31-s − 6.29e6·32-s − 4.38e6·33-s + 4.63e6·34-s + ⋯ |
L(s) = 1 | − 1.41·2-s − 1.15·3-s + 3/2·4-s + 1.63·6-s − 0.498·7-s − 1.41·8-s + 9-s + 0.557·11-s − 1.73·12-s − 0.688·13-s + 0.704·14-s + 5/4·16-s − 0.420·17-s − 1.41·18-s + 0.203·19-s + 0.575·21-s − 0.788·22-s − 0.595·23-s + 1.63·24-s + 0.973·26-s − 0.769·27-s − 0.747·28-s − 0.0546·29-s + 1.23·31-s − 1.06·32-s − 0.644·33-s + 0.594·34-s + ⋯ |
Λ(s)=(=(22500s/2ΓC(s)2L(s)Λ(10−s)
Λ(s)=(=(22500s/2ΓC(s+9/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
22500
= 22⋅32⋅54
|
Sign: |
1
|
Analytic conductor: |
5968.39 |
Root analytic conductor: |
8.78950 |
Motivic weight: |
9 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
2
|
Selberg data: |
(4, 22500, ( :9/2,9/2), 1)
|
Particular Values
L(5) |
= |
0 |
L(21) |
= |
0 |
L(211) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | C1 | (1+p4T)2 |
| 3 | C1 | (1+p4T)2 |
| 5 | | 1 |
good | 7 | D4 | 1+3166T−1852071pT2+3166p9T3+p18T4 |
| 11 | D4 | 1−27084T+4803103546T2−27084p9T3+p18T4 |
| 13 | D4 | 1+70858T+16308846387T2+70858p9T3+p18T4 |
| 17 | D4 | 1+144756T+214619001478T2+144756p9T3+p18T4 |
| 19 | D4 | 1−115690T+436265121183T2−115690p9T3+p18T4 |
| 23 | D4 | 1+799668T+2741824392082T2+799668p9T3+p18T4 |
| 29 | D4 | 1+208140T+8938526934238T2+208140p9T3+p18T4 |
| 31 | D4 | 1−6360094T+57405852057951T2−6360094p9T3+p18T4 |
| 37 | D4 | 1+1876036T+24941642932878T2+1876036p9T3+p18T4 |
| 41 | D4 | 1−38125824T+904099447138066T2−38125824p9T3+p18T4 |
| 43 | D4 | 1−3776162T+682777161430647T2−3776162p9T3+p18T4 |
| 47 | D4 | 1−11199924T+1294585861381378T2−11199924p9T3+p18T4 |
| 53 | D4 | 1−38780952T+6907493154005242T2−38780952p9T3+p18T4 |
| 59 | D4 | 1−286804020T+37407547383589978T2−286804020p9T3+p18T4 |
| 61 | D4 | 1+255752666T+35405174494625571T2+255752666p9T3+p18T4 |
| 67 | D4 | 1+208870006T+48155607060534303T2+208870006p9T3+p18T4 |
| 71 | D4 | 1+277057536T+105156674810622286T2+277057536p9T3+p18T4 |
| 73 | D4 | 1−60155132T+67672504711861782T2−60155132p9T3+p18T4 |
| 79 | D4 | 1−127287760T+230560963243036638T2−127287760p9T3+p18T4 |
| 83 | D4 | 1+596984628T+330798104814677002T2+596984628p9T3+p18T4 |
| 89 | D4 | 1−940116480T+562146108317908018T2−940116480p9T3+p18T4 |
| 97 | D4 | 1+1317925426T+906740973602065203T2+1317925426p9T3+p18T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.72084476947275836962078064388, −10.66666530653370478428432025170, −9.979087594405284503781934571681, −9.598444534577307483119370754307, −9.127350034207976838821958991492, −8.597991869028760443529777816626, −7.76762530754042668138085773648, −7.48267316450309454955014130451, −6.68483232221556197914502070034, −6.54462855124113036125561547229, −5.78305907312235730302001337344, −5.37718389589092065676110937388, −4.34152289607575701726245817652, −3.95371776279156984197884995413, −2.73918520692992314118570804859, −2.39903445905845334191450592233, −1.28761801814845106503651301109, −1.04345280845314758557678611129, 0, 0,
1.04345280845314758557678611129, 1.28761801814845106503651301109, 2.39903445905845334191450592233, 2.73918520692992314118570804859, 3.95371776279156984197884995413, 4.34152289607575701726245817652, 5.37718389589092065676110937388, 5.78305907312235730302001337344, 6.54462855124113036125561547229, 6.68483232221556197914502070034, 7.48267316450309454955014130451, 7.76762530754042668138085773648, 8.597991869028760443529777816626, 9.127350034207976838821958991492, 9.598444534577307483119370754307, 9.979087594405284503781934571681, 10.66666530653370478428432025170, 10.72084476947275836962078064388