Properties

Label 4-1584e2-1.1-c1e2-0-43
Degree $4$
Conductor $2509056$
Sign $-1$
Analytic cond. $159.979$
Root an. cond. $3.55644$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·5-s − 3·9-s − 3·11-s + 9·23-s − 3·25-s + 31-s + 6·37-s − 6·45-s − 13·47-s − 9·49-s − 2·53-s − 6·55-s + 5·59-s + 14·67-s − 16·71-s + 9·81-s + 30·89-s − 15·97-s + 9·99-s + 103-s + 13·113-s + 18·115-s − 2·121-s − 10·125-s + 127-s + 131-s + 137-s + ⋯
L(s)  = 1  + 0.894·5-s − 9-s − 0.904·11-s + 1.87·23-s − 3/5·25-s + 0.179·31-s + 0.986·37-s − 0.894·45-s − 1.89·47-s − 9/7·49-s − 0.274·53-s − 0.809·55-s + 0.650·59-s + 1.71·67-s − 1.89·71-s + 81-s + 3.17·89-s − 1.52·97-s + 0.904·99-s + 0.0985·103-s + 1.22·113-s + 1.67·115-s − 0.181·121-s − 0.894·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2509056 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2509056 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(2509056\)    =    \(2^{8} \cdot 3^{4} \cdot 11^{2}\)
Sign: $-1$
Analytic conductor: \(159.979\)
Root analytic conductor: \(3.55644\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 2509056,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_2$ \( 1 + p T^{2} \)
11$C_2$ \( 1 + 3 T + p T^{2} \)
good5$C_2$$\times$$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + T + p T^{2} ) \)
7$C_2^2$ \( 1 + 9 T^{2} + p^{2} T^{4} \)
13$C_2^2$ \( 1 - 11 T^{2} + p^{2} T^{4} \)
17$C_2^2$ \( 1 + 14 T^{2} + p^{2} T^{4} \)
19$C_2^2$ \( 1 - 10 T^{2} + p^{2} T^{4} \)
23$C_2$$\times$$C_2$ \( ( 1 - 5 T + p T^{2} )( 1 - 4 T + p T^{2} ) \)
29$C_2^2$ \( 1 + 5 T^{2} + p^{2} T^{4} \)
31$C_2$$\times$$C_2$ \( ( 1 - 5 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
37$C_2$$\times$$C_2$ \( ( 1 - 7 T + p T^{2} )( 1 + T + p T^{2} ) \)
41$C_2^2$ \( 1 - 23 T^{2} + p^{2} T^{4} \)
43$C_2^2$ \( 1 + 13 T^{2} + p^{2} T^{4} \)
47$C_2$$\times$$C_2$ \( ( 1 + 4 T + p T^{2} )( 1 + 9 T + p T^{2} ) \)
53$C_2$$\times$$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + 5 T + p T^{2} ) \)
59$C_2$$\times$$C_2$ \( ( 1 - 13 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
61$C_2^2$ \( 1 + 53 T^{2} + p^{2} T^{4} \)
67$C_2$ \( ( 1 - 7 T + p T^{2} )^{2} \)
71$C_2$$\times$$C_2$ \( ( 1 + T + p T^{2} )( 1 + 15 T + p T^{2} ) \)
73$C_2^2$ \( 1 - 2 T^{2} + p^{2} T^{4} \)
79$C_2^2$ \( 1 + 17 T^{2} + p^{2} T^{4} \)
83$C_2^2$ \( 1 + 69 T^{2} + p^{2} T^{4} \)
89$C_2$ \( ( 1 - 15 T + p T^{2} )^{2} \)
97$C_2$$\times$$C_2$ \( ( 1 + T + p T^{2} )( 1 + 14 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.44151126668681669524687792259, −7.00878039269013825282439491017, −6.47758496866639655111158863524, −6.10250463880629689655326743159, −5.84956439995286640234130923052, −5.21958689456120862847576080331, −4.92331167347023792234908667206, −4.70707363248878522957341794804, −3.72880604582316828812687327597, −3.35068255680052480913720138864, −2.76952003112965008143634669029, −2.44080595567376607762390601798, −1.79647520171410037571270294532, −1.02123098984004542739766011608, 0, 1.02123098984004542739766011608, 1.79647520171410037571270294532, 2.44080595567376607762390601798, 2.76952003112965008143634669029, 3.35068255680052480913720138864, 3.72880604582316828812687327597, 4.70707363248878522957341794804, 4.92331167347023792234908667206, 5.21958689456120862847576080331, 5.84956439995286640234130923052, 6.10250463880629689655326743159, 6.47758496866639655111158863524, 7.00878039269013825282439491017, 7.44151126668681669524687792259

Graph of the $Z$-function along the critical line