Properties

Label 4-160e2-1.1-c1e2-0-11
Degree 44
Conductor 2560025600
Sign 11
Analytic cond. 1.632271.63227
Root an. cond. 1.130311.13031
Motivic weight 11
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank 00

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4·3-s − 4·5-s + 4·7-s + 8·9-s − 2·13-s − 16·15-s − 10·17-s + 8·19-s + 16·21-s + 4·23-s + 11·25-s + 12·27-s − 16·35-s + 2·37-s − 8·39-s − 12·43-s − 32·45-s − 4·47-s + 8·49-s − 40·51-s − 14·53-s + 32·57-s + 8·59-s − 8·61-s + 32·63-s + 8·65-s − 20·67-s + ⋯
L(s)  = 1  + 2.30·3-s − 1.78·5-s + 1.51·7-s + 8/3·9-s − 0.554·13-s − 4.13·15-s − 2.42·17-s + 1.83·19-s + 3.49·21-s + 0.834·23-s + 11/5·25-s + 2.30·27-s − 2.70·35-s + 0.328·37-s − 1.28·39-s − 1.82·43-s − 4.77·45-s − 0.583·47-s + 8/7·49-s − 5.60·51-s − 1.92·53-s + 4.23·57-s + 1.04·59-s − 1.02·61-s + 4.03·63-s + 0.992·65-s − 2.44·67-s + ⋯

Functional equation

Λ(s)=(25600s/2ΓC(s)2L(s)=(Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut & 25600 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}
Λ(s)=(25600s/2ΓC(s+1/2)2L(s)=(Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 25600 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}

Invariants

Degree: 44
Conductor: 2560025600    =    210522^{10} \cdot 5^{2}
Sign: 11
Analytic conductor: 1.632271.63227
Root analytic conductor: 1.130311.13031
Motivic weight: 11
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: 00
Selberg data: (4, 25600, ( :1/2,1/2), 1)(4,\ 25600,\ (\ :1/2, 1/2),\ 1)

Particular Values

L(1)L(1) \approx 2.0792748222.079274822
L(12)L(\frac12) \approx 2.0792748222.079274822
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppGal(Fp)\Gal(F_p)Fp(T)F_p(T)
bad2 1 1
5C2C_2 1+4T+pT2 1 + 4 T + p T^{2}
good3C22C_2^2 14T+8T24pT3+p2T4 1 - 4 T + 8 T^{2} - 4 p T^{3} + p^{2} T^{4}
7C22C_2^2 14T+8T24pT3+p2T4 1 - 4 T + 8 T^{2} - 4 p T^{3} + p^{2} T^{4}
11C2C_2 (1pT2)2 ( 1 - p T^{2} )^{2}
13C2C_2 (14T+pT2)(1+6T+pT2) ( 1 - 4 T + p T^{2} )( 1 + 6 T + p T^{2} )
17C2C_2 (1+2T+pT2)(1+8T+pT2) ( 1 + 2 T + p T^{2} )( 1 + 8 T + p T^{2} )
19C2C_2 (14T+pT2)2 ( 1 - 4 T + p T^{2} )^{2}
23C22C_2^2 14T+8T24pT3+p2T4 1 - 4 T + 8 T^{2} - 4 p T^{3} + p^{2} T^{4}
29C2C_2 (110T+pT2)(1+10T+pT2) ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} )
31C22C_2^2 146T2+p2T4 1 - 46 T^{2} + p^{2} T^{4}
37C22C_2^2 12T+2T22pT3+p2T4 1 - 2 T + 2 T^{2} - 2 p T^{3} + p^{2} T^{4}
41C2C_2 (1+pT2)2 ( 1 + p T^{2} )^{2}
43C22C_2^2 1+12T+72T2+12pT3+p2T4 1 + 12 T + 72 T^{2} + 12 p T^{3} + p^{2} T^{4}
47C22C_2^2 1+4T+8T2+4pT3+p2T4 1 + 4 T + 8 T^{2} + 4 p T^{3} + p^{2} T^{4}
53C22C_2^2 1+14T+98T2+14pT3+p2T4 1 + 14 T + 98 T^{2} + 14 p T^{3} + p^{2} T^{4}
59C2C_2 (14T+pT2)2 ( 1 - 4 T + p T^{2} )^{2}
61C2C_2 (1+4T+pT2)2 ( 1 + 4 T + p T^{2} )^{2}
67C22C_2^2 1+20T+200T2+20pT3+p2T4 1 + 20 T + 200 T^{2} + 20 p T^{3} + p^{2} T^{4}
71C22C_2^2 1+2T2+p2T4 1 + 2 T^{2} + p^{2} T^{4}
73C22C_2^2 1+6T+18T2+6pT3+p2T4 1 + 6 T + 18 T^{2} + 6 p T^{3} + p^{2} T^{4}
79C2C_2 (116T+pT2)2 ( 1 - 16 T + p T^{2} )^{2}
83C22C_2^2 1+4T+8T2+4pT3+p2T4 1 + 4 T + 8 T^{2} + 4 p T^{3} + p^{2} T^{4}
89C2C_2 (1pT2)2 ( 1 - p T^{2} )^{2}
97C22C_2^2 1+6T+18T2+6pT3+p2T4 1 + 6 T + 18 T^{2} + 6 p T^{3} + p^{2} T^{4}
show more
show less
   L(s)=p j=14(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−13.52948900660978997700739454452, −12.71374801099312588499214377472, −12.07023270002773118411229294502, −11.67769579780215213176866036881, −11.02035611823193949200370460922, −10.98230605233472102033642787198, −9.939661053809370859920349707089, −9.126987559540030977544371724928, −9.010490516613839272564350717719, −8.413988397954181114823838919408, −7.929833937490584685691239283390, −7.79759963680671264523446257947, −7.14425004370225237975692630081, −6.65685970773035818937017623377, −4.89861537428938523849156835685, −4.80279718484695034016716814816, −4.04291414657135911424569089257, −3.24165158360942039221965694743, −2.79192753768080197357103162731, −1.72813720098024007817035789707, 1.72813720098024007817035789707, 2.79192753768080197357103162731, 3.24165158360942039221965694743, 4.04291414657135911424569089257, 4.80279718484695034016716814816, 4.89861537428938523849156835685, 6.65685970773035818937017623377, 7.14425004370225237975692630081, 7.79759963680671264523446257947, 7.929833937490584685691239283390, 8.413988397954181114823838919408, 9.010490516613839272564350717719, 9.126987559540030977544371724928, 9.939661053809370859920349707089, 10.98230605233472102033642787198, 11.02035611823193949200370460922, 11.67769579780215213176866036881, 12.07023270002773118411229294502, 12.71374801099312588499214377472, 13.52948900660978997700739454452

Graph of the ZZ-function along the critical line