L(s) = 1 | − 2·5-s − 6·9-s − 25-s − 20·29-s + 20·41-s + 12·45-s − 14·49-s − 20·61-s + 27·81-s + 20·89-s − 4·101-s + 12·109-s − 22·121-s + 12·125-s + 127-s + 131-s + 137-s + 139-s + 40·145-s + 149-s + 151-s + 157-s + 163-s + 167-s + 10·169-s + 173-s + 179-s + ⋯ |
L(s) = 1 | − 0.894·5-s − 2·9-s − 1/5·25-s − 3.71·29-s + 3.12·41-s + 1.78·45-s − 2·49-s − 2.56·61-s + 3·81-s + 2.11·89-s − 0.398·101-s + 1.14·109-s − 2·121-s + 1.07·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 3.32·145-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 0.769·169-s + 0.0760·173-s + 0.0747·179-s + ⋯ |
Λ(s)=(=(25600s/2ΓC(s)2L(s)−Λ(2−s)
Λ(s)=(=(25600s/2ΓC(s+1/2)2L(s)−Λ(1−s)
Degree: |
4 |
Conductor: |
25600
= 210⋅52
|
Sign: |
−1
|
Analytic conductor: |
1.63227 |
Root analytic conductor: |
1.13031 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
1
|
Selberg data: |
(4, 25600, ( :1/2,1/2), −1)
|
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 5 | C2 | 1+2T+pT2 |
good | 3 | C2 | (1+pT2)2 |
| 7 | C2 | (1+pT2)2 |
| 11 | C2 | (1+pT2)2 |
| 13 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 17 | C2 | (1−2T+pT2)(1+2T+pT2) |
| 19 | C2 | (1+pT2)2 |
| 23 | C2 | (1+pT2)2 |
| 29 | C2 | (1+10T+pT2)2 |
| 31 | C2 | (1+pT2)2 |
| 37 | C2 | (1−2T+pT2)(1+2T+pT2) |
| 41 | C2 | (1−10T+pT2)2 |
| 43 | C2 | (1+pT2)2 |
| 47 | C2 | (1+pT2)2 |
| 53 | C2 | (1−14T+pT2)(1+14T+pT2) |
| 59 | C2 | (1+pT2)2 |
| 61 | C2 | (1+10T+pT2)2 |
| 67 | C2 | (1+pT2)2 |
| 71 | C2 | (1+pT2)2 |
| 73 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 79 | C2 | (1+pT2)2 |
| 83 | C2 | (1+pT2)2 |
| 89 | C2 | (1−10T+pT2)2 |
| 97 | C2 | (1−18T+pT2)(1+18T+pT2) |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.84453522425202397161354104633, −9.617316516935557446365175892726, −9.206579341791145473157585005601, −8.955386231165229198073332132052, −8.025782606763976976877695514876, −7.77199473906097062385997282225, −7.38383189330491254934984805094, −6.27997548582365804353754428543, −5.87146418848833687506982135026, −5.37327377173791634385808352079, −4.46989807490289628768060263585, −3.67478222653086463350186782835, −3.13241440937412885242101141742, −2.12458086750050120053975349819, 0,
2.12458086750050120053975349819, 3.13241440937412885242101141742, 3.67478222653086463350186782835, 4.46989807490289628768060263585, 5.37327377173791634385808352079, 5.87146418848833687506982135026, 6.27997548582365804353754428543, 7.38383189330491254934984805094, 7.77199473906097062385997282225, 8.025782606763976976877695514876, 8.955386231165229198073332132052, 9.206579341791145473157585005601, 9.617316516935557446365175892726, 10.84453522425202397161354104633