L(s) = 1 | − 2·5-s − 2·9-s − 12·13-s + 4·17-s + 3·25-s − 4·29-s + 4·37-s − 20·41-s + 4·45-s − 10·49-s + 4·53-s + 4·61-s + 24·65-s + 20·73-s − 5·81-s − 8·85-s − 12·89-s + 20·97-s + 28·101-s − 28·109-s − 12·113-s + 24·117-s − 6·121-s − 4·125-s + 127-s + 131-s + 137-s + ⋯ |
L(s) = 1 | − 0.894·5-s − 2/3·9-s − 3.32·13-s + 0.970·17-s + 3/5·25-s − 0.742·29-s + 0.657·37-s − 3.12·41-s + 0.596·45-s − 1.42·49-s + 0.549·53-s + 0.512·61-s + 2.97·65-s + 2.34·73-s − 5/9·81-s − 0.867·85-s − 1.27·89-s + 2.03·97-s + 2.78·101-s − 2.68·109-s − 1.12·113-s + 2.21·117-s − 0.545·121-s − 0.357·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + ⋯ |
Λ(s)=(=(25600s/2ΓC(s)2L(s)−Λ(2−s)
Λ(s)=(=(25600s/2ΓC(s+1/2)2L(s)−Λ(1−s)
Degree: |
4 |
Conductor: |
25600
= 210⋅52
|
Sign: |
−1
|
Analytic conductor: |
1.63227 |
Root analytic conductor: |
1.13031 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
1
|
Selberg data: |
(4, 25600, ( :1/2,1/2), −1)
|
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 5 | C1 | (1+T)2 |
good | 3 | C2 | (1−2T+pT2)(1+2T+pT2) |
| 7 | C2 | (1−2T+pT2)(1+2T+pT2) |
| 11 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 13 | C2 | (1+6T+pT2)2 |
| 17 | C2 | (1−2T+pT2)2 |
| 19 | C2 | (1−8T+pT2)(1+8T+pT2) |
| 23 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 29 | C2 | (1+2T+pT2)2 |
| 31 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 37 | C2 | (1−2T+pT2)2 |
| 41 | C2 | (1+10T+pT2)2 |
| 43 | C2 | (1−2T+pT2)(1+2T+pT2) |
| 47 | C2 | (1−2T+pT2)(1+2T+pT2) |
| 53 | C2 | (1−2T+pT2)2 |
| 59 | C2 | (1+pT2)2 |
| 61 | C2 | (1−2T+pT2)2 |
| 67 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 71 | C2 | (1−12T+pT2)(1+12T+pT2) |
| 73 | C2 | (1−10T+pT2)2 |
| 79 | C2 | (1−8T+pT2)(1+8T+pT2) |
| 83 | C2 | (1−10T+pT2)(1+10T+pT2) |
| 89 | C2 | (1+6T+pT2)2 |
| 97 | C2 | (1−10T+pT2)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.29364010457156446481778884088, −9.759510932768572667567645779831, −9.572587619444812153159504270402, −8.731345173958242569557384315653, −7.967338729692305876626971946668, −7.85140754717246485615619273252, −7.05269675268361745315034445294, −6.81951269321906735272373937416, −5.70243463207358237884993422463, −4.92945525258561389220988501216, −4.88847555485350104575427844162, −3.69518610983128083383746206280, −3.01064345970677263239408332098, −2.17341817164904427445574627486, 0,
2.17341817164904427445574627486, 3.01064345970677263239408332098, 3.69518610983128083383746206280, 4.88847555485350104575427844162, 4.92945525258561389220988501216, 5.70243463207358237884993422463, 6.81951269321906735272373937416, 7.05269675268361745315034445294, 7.85140754717246485615619273252, 7.967338729692305876626971946668, 8.731345173958242569557384315653, 9.572587619444812153159504270402, 9.759510932768572667567645779831, 10.29364010457156446481778884088