L(s) = 1 | − 4·3-s − 4·5-s − 4·7-s + 8·9-s − 2·13-s + 16·15-s − 10·17-s − 8·19-s + 16·21-s − 4·23-s + 11·25-s − 12·27-s + 16·35-s + 2·37-s + 8·39-s + 12·43-s − 32·45-s + 4·47-s + 8·49-s + 40·51-s − 14·53-s + 32·57-s − 8·59-s − 8·61-s − 32·63-s + 8·65-s + 20·67-s + ⋯ |
L(s) = 1 | − 2.30·3-s − 1.78·5-s − 1.51·7-s + 8/3·9-s − 0.554·13-s + 4.13·15-s − 2.42·17-s − 1.83·19-s + 3.49·21-s − 0.834·23-s + 11/5·25-s − 2.30·27-s + 2.70·35-s + 0.328·37-s + 1.28·39-s + 1.82·43-s − 4.77·45-s + 0.583·47-s + 8/7·49-s + 5.60·51-s − 1.92·53-s + 4.23·57-s − 1.04·59-s − 1.02·61-s − 4.03·63-s + 0.992·65-s + 2.44·67-s + ⋯ |
Λ(s)=(=(25600s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(25600s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
25600
= 210⋅52
|
Sign: |
1
|
Analytic conductor: |
1.63227 |
Root analytic conductor: |
1.13031 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
2
|
Selberg data: |
(4, 25600, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 5 | C2 | 1+4T+pT2 |
good | 3 | C22 | 1+4T+8T2+4pT3+p2T4 |
| 7 | C22 | 1+4T+8T2+4pT3+p2T4 |
| 11 | C2 | (1−pT2)2 |
| 13 | C2 | (1−4T+pT2)(1+6T+pT2) |
| 17 | C2 | (1+2T+pT2)(1+8T+pT2) |
| 19 | C2 | (1+4T+pT2)2 |
| 23 | C22 | 1+4T+8T2+4pT3+p2T4 |
| 29 | C2 | (1−10T+pT2)(1+10T+pT2) |
| 31 | C22 | 1−46T2+p2T4 |
| 37 | C22 | 1−2T+2T2−2pT3+p2T4 |
| 41 | C2 | (1+pT2)2 |
| 43 | C22 | 1−12T+72T2−12pT3+p2T4 |
| 47 | C22 | 1−4T+8T2−4pT3+p2T4 |
| 53 | C22 | 1+14T+98T2+14pT3+p2T4 |
| 59 | C2 | (1+4T+pT2)2 |
| 61 | C2 | (1+4T+pT2)2 |
| 67 | C22 | 1−20T+200T2−20pT3+p2T4 |
| 71 | C22 | 1+2T2+p2T4 |
| 73 | C22 | 1+6T+18T2+6pT3+p2T4 |
| 79 | C2 | (1+16T+pT2)2 |
| 83 | C22 | 1−4T+8T2−4pT3+p2T4 |
| 89 | C2 | (1−pT2)2 |
| 97 | C22 | 1+6T+18T2+6pT3+p2T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.39120829607980716833016442920, −12.24639074133331883143606070816, −11.53149773793812008891315253886, −11.21213632369939348194190299961, −10.72216362126657541072761406516, −10.65330872072270715417064095239, −9.694235667765133118993808626927, −9.155775512676237659889010969563, −8.493258516651058848658419487236, −7.79991666445786904202477652183, −6.98204015859890003664557088210, −6.76496165610320624134231613644, −6.17238974846732228512913187291, −5.82427128957150840200781620625, −4.62121038175294800783863441427, −4.44760348718601702809622473482, −3.81985278896428350058783924405, −2.55316889778586010739924050045, 0, 0,
2.55316889778586010739924050045, 3.81985278896428350058783924405, 4.44760348718601702809622473482, 4.62121038175294800783863441427, 5.82427128957150840200781620625, 6.17238974846732228512913187291, 6.76496165610320624134231613644, 6.98204015859890003664557088210, 7.79991666445786904202477652183, 8.493258516651058848658419487236, 9.155775512676237659889010969563, 9.694235667765133118993808626927, 10.65330872072270715417064095239, 10.72216362126657541072761406516, 11.21213632369939348194190299961, 11.53149773793812008891315253886, 12.24639074133331883143606070816, 12.39120829607980716833016442920