L(s) = 1 | + 8·7-s − 6·9-s + 4·17-s − 8·23-s + 25-s + 16·31-s − 12·41-s − 8·47-s + 34·49-s − 48·63-s − 12·73-s + 27·81-s − 12·89-s − 28·97-s − 8·103-s + 36·113-s + 32·119-s − 6·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s − 24·153-s + 157-s − 64·161-s + ⋯ |
L(s) = 1 | + 3.02·7-s − 2·9-s + 0.970·17-s − 1.66·23-s + 1/5·25-s + 2.87·31-s − 1.87·41-s − 1.16·47-s + 34/7·49-s − 6.04·63-s − 1.40·73-s + 3·81-s − 1.27·89-s − 2.84·97-s − 0.788·103-s + 3.38·113-s + 2.93·119-s − 0.545·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s − 1.94·153-s + 0.0798·157-s − 5.04·161-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 25600 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 25600 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.441076799\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.441076799\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $\Gal(F_p)$ | $F_p(T)$ |
---|
bad | 2 | | \( 1 \) |
| 5 | $C_1$$\times$$C_1$ | \( ( 1 - T )( 1 + T ) \) |
good | 3 | $C_2$ | \( ( 1 + p T^{2} )^{2} \) |
| 7 | $C_2$ | \( ( 1 - 4 T + p T^{2} )^{2} \) |
| 11 | $C_2$ | \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \) |
| 13 | $C_2$ | \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \) |
| 17 | $C_2$ | \( ( 1 - 2 T + p T^{2} )^{2} \) |
| 19 | $C_2$ | \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \) |
| 23 | $C_2$ | \( ( 1 + 4 T + p T^{2} )^{2} \) |
| 29 | $C_2$ | \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \) |
| 31 | $C_2$ | \( ( 1 - 8 T + p T^{2} )^{2} \) |
| 37 | $C_2$ | \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \) |
| 41 | $C_2$ | \( ( 1 + 6 T + p T^{2} )^{2} \) |
| 43 | $C_2$ | \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \) |
| 47 | $C_2$ | \( ( 1 + 4 T + p T^{2} )^{2} \) |
| 53 | $C_2$ | \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \) |
| 59 | $C_2$ | \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \) |
| 61 | $C_2$ | \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \) |
| 67 | $C_2$ | \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \) |
| 71 | $C_2$ | \( ( 1 + p T^{2} )^{2} \) |
| 73 | $C_2$ | \( ( 1 + 6 T + p T^{2} )^{2} \) |
| 79 | $C_2$ | \( ( 1 + p T^{2} )^{2} \) |
| 83 | $C_2$ | \( ( 1 - 16 T + p T^{2} )( 1 + 16 T + p T^{2} ) \) |
| 89 | $C_2$ | \( ( 1 + 6 T + p T^{2} )^{2} \) |
| 97 | $C_2$ | \( ( 1 + 14 T + p T^{2} )^{2} \) |
show more | | |
show less | | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.98792460132555645103756947006, −10.12246838996141367241613997715, −9.759879680318004905765589416029, −8.521590142691914902934262227672, −8.438761280447847026288494531448, −8.187189248591461729679142296814, −7.75327442992794184642667314086, −6.81982863783073968912914119025, −5.84906736542976130410760055690, −5.61529786752672156928392151688, −4.76905661119552301505559653794, −4.55607707806255331316875895933, −3.31415635628336508949565358363, −2.39961978181641342090490014624, −1.46465509347525672726427035614,
1.46465509347525672726427035614, 2.39961978181641342090490014624, 3.31415635628336508949565358363, 4.55607707806255331316875895933, 4.76905661119552301505559653794, 5.61529786752672156928392151688, 5.84906736542976130410760055690, 6.81982863783073968912914119025, 7.75327442992794184642667314086, 8.187189248591461729679142296814, 8.438761280447847026288494531448, 8.521590142691914902934262227672, 9.759879680318004905765589416029, 10.12246838996141367241613997715, 10.98792460132555645103756947006