L(s) = 1 | + 8·7-s − 6·9-s + 4·17-s − 8·23-s + 25-s + 16·31-s − 12·41-s − 8·47-s + 34·49-s − 48·63-s − 12·73-s + 27·81-s − 12·89-s − 28·97-s − 8·103-s + 36·113-s + 32·119-s − 6·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s − 24·153-s + 157-s − 64·161-s + ⋯ |
L(s) = 1 | + 3.02·7-s − 2·9-s + 0.970·17-s − 1.66·23-s + 1/5·25-s + 2.87·31-s − 1.87·41-s − 1.16·47-s + 34/7·49-s − 6.04·63-s − 1.40·73-s + 3·81-s − 1.27·89-s − 2.84·97-s − 0.788·103-s + 3.38·113-s + 2.93·119-s − 0.545·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s − 1.94·153-s + 0.0798·157-s − 5.04·161-s + ⋯ |
Λ(s)=(=(25600s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(25600s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
25600
= 210⋅52
|
Sign: |
1
|
Analytic conductor: |
1.63227 |
Root analytic conductor: |
1.13031 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 25600, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
1.441076799 |
L(21) |
≈ |
1.441076799 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 5 | C1×C1 | (1−T)(1+T) |
good | 3 | C2 | (1+pT2)2 |
| 7 | C2 | (1−4T+pT2)2 |
| 11 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 13 | C2 | (1−2T+pT2)(1+2T+pT2) |
| 17 | C2 | (1−2T+pT2)2 |
| 19 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 23 | C2 | (1+4T+pT2)2 |
| 29 | C2 | (1−2T+pT2)(1+2T+pT2) |
| 31 | C2 | (1−8T+pT2)2 |
| 37 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 41 | C2 | (1+6T+pT2)2 |
| 43 | C2 | (1−8T+pT2)(1+8T+pT2) |
| 47 | C2 | (1+4T+pT2)2 |
| 53 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 59 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 61 | C2 | (1−2T+pT2)(1+2T+pT2) |
| 67 | C2 | (1−8T+pT2)(1+8T+pT2) |
| 71 | C2 | (1+pT2)2 |
| 73 | C2 | (1+6T+pT2)2 |
| 79 | C2 | (1+pT2)2 |
| 83 | C2 | (1−16T+pT2)(1+16T+pT2) |
| 89 | C2 | (1+6T+pT2)2 |
| 97 | C2 | (1+14T+pT2)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.98792460132555645103756947006, −10.12246838996141367241613997715, −9.759879680318004905765589416029, −8.521590142691914902934262227672, −8.438761280447847026288494531448, −8.187189248591461729679142296814, −7.75327442992794184642667314086, −6.81982863783073968912914119025, −5.84906736542976130410760055690, −5.61529786752672156928392151688, −4.76905661119552301505559653794, −4.55607707806255331316875895933, −3.31415635628336508949565358363, −2.39961978181641342090490014624, −1.46465509347525672726427035614,
1.46465509347525672726427035614, 2.39961978181641342090490014624, 3.31415635628336508949565358363, 4.55607707806255331316875895933, 4.76905661119552301505559653794, 5.61529786752672156928392151688, 5.84906736542976130410760055690, 6.81982863783073968912914119025, 7.75327442992794184642667314086, 8.187189248591461729679142296814, 8.438761280447847026288494531448, 8.521590142691914902934262227672, 9.759879680318004905765589416029, 10.12246838996141367241613997715, 10.98792460132555645103756947006