L(s) = 1 | + 2·5-s + 2·9-s + 4·11-s − 4·19-s − 25-s + 4·29-s − 16·31-s + 4·41-s + 4·45-s − 6·49-s + 8·55-s + 20·59-s − 12·61-s + 8·71-s − 5·81-s + 4·89-s − 8·95-s + 8·99-s − 12·101-s + 20·109-s − 6·121-s − 12·125-s + 127-s + 131-s + 137-s + 139-s + 8·145-s + ⋯ |
L(s) = 1 | + 0.894·5-s + 2/3·9-s + 1.20·11-s − 0.917·19-s − 1/5·25-s + 0.742·29-s − 2.87·31-s + 0.624·41-s + 0.596·45-s − 6/7·49-s + 1.07·55-s + 2.60·59-s − 1.53·61-s + 0.949·71-s − 5/9·81-s + 0.423·89-s − 0.820·95-s + 0.804·99-s − 1.19·101-s + 1.91·109-s − 0.545·121-s − 1.07·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.664·145-s + ⋯ |
Λ(s)=(=(25600s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(25600s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
25600
= 210⋅52
|
Sign: |
1
|
Analytic conductor: |
1.63227 |
Root analytic conductor: |
1.13031 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
yes
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 25600, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
1.494507497 |
L(21) |
≈ |
1.494507497 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 5 | C2 | 1−2T+pT2 |
good | 3 | C22 | 1−2T2+p2T4 |
| 7 | C22 | 1+6T2+p2T4 |
| 11 | C2×C2 | (1−4T+pT2)(1+pT2) |
| 13 | C22 | 1+6T2+p2T4 |
| 17 | C22 | 1+14T2+p2T4 |
| 19 | C2×C2 | (1−4T+pT2)(1+8T+pT2) |
| 23 | C22 | 1−26T2+p2T4 |
| 29 | C2×C2 | (1−6T+pT2)(1+2T+pT2) |
| 31 | C2 | (1+8T+pT2)2 |
| 37 | C22 | 1+6T2+p2T4 |
| 41 | C2×C2 | (1−10T+pT2)(1+6T+pT2) |
| 43 | C22 | 1−18T2+p2T4 |
| 47 | C22 | 1+54T2+p2T4 |
| 53 | C22 | 1−10T2+p2T4 |
| 59 | C2×C2 | (1−12T+pT2)(1−8T+pT2) |
| 61 | C2×C2 | (1−2T+pT2)(1+14T+pT2) |
| 67 | C22 | 1−66T2+p2T4 |
| 71 | C2×C2 | (1−8T+pT2)(1+pT2) |
| 73 | C22 | 1+30T2+p2T4 |
| 79 | C2 | (1−8T+pT2)(1+8T+pT2) |
| 83 | C22 | 1+62T2+p2T4 |
| 89 | C2×C2 | (1−10T+pT2)(1+6T+pT2) |
| 97 | C22 | 1−18T2+p2T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.63205868806947687376151584522, −10.02903962845263956296816426871, −9.610325820479752915128161554525, −9.116461851488262454950794669344, −8.710983449597010051120350438492, −7.966346157839275655786998819682, −7.21349856853454183234034686305, −6.80685216687329560784577020357, −6.17347444353101165016767123962, −5.66940960198070682579828308583, −4.90472667772212871688171740074, −4.09321441703235896059660907164, −3.57735463172639924942421110349, −2.28237866716572804484448288641, −1.53239042869583881003940329862,
1.53239042869583881003940329862, 2.28237866716572804484448288641, 3.57735463172639924942421110349, 4.09321441703235896059660907164, 4.90472667772212871688171740074, 5.66940960198070682579828308583, 6.17347444353101165016767123962, 6.80685216687329560784577020357, 7.21349856853454183234034686305, 7.966346157839275655786998819682, 8.710983449597010051120350438492, 9.116461851488262454950794669344, 9.610325820479752915128161554525, 10.02903962845263956296816426871, 10.63205868806947687376151584522