L(s) = 1 | + 8·3-s + 10·5-s + 8·7-s + 18·9-s + 64·11-s + 12·13-s + 80·15-s + 4·17-s + 208·19-s + 64·21-s + 120·23-s + 75·25-s − 8·27-s − 292·29-s + 176·31-s + 512·33-s + 80·35-s − 356·37-s + 96·39-s + 100·41-s − 376·43-s + 180·45-s − 280·47-s − 38·49-s + 32·51-s + 316·53-s + 640·55-s + ⋯ |
L(s) = 1 | + 1.53·3-s + 0.894·5-s + 0.431·7-s + 2/3·9-s + 1.75·11-s + 0.256·13-s + 1.37·15-s + 0.0570·17-s + 2.51·19-s + 0.665·21-s + 1.08·23-s + 3/5·25-s − 0.0570·27-s − 1.86·29-s + 1.01·31-s + 2.70·33-s + 0.386·35-s − 1.58·37-s + 0.394·39-s + 0.380·41-s − 1.33·43-s + 0.596·45-s − 0.868·47-s − 0.110·49-s + 0.0878·51-s + 0.818·53-s + 1.56·55-s + ⋯ |
Λ(s)=(=(25600s/2ΓC(s)2L(s)Λ(4−s)
Λ(s)=(=(25600s/2ΓC(s+3/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
25600
= 210⋅52
|
Sign: |
1
|
Analytic conductor: |
89.1193 |
Root analytic conductor: |
3.07250 |
Motivic weight: |
3 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 25600, ( :3/2,3/2), 1)
|
Particular Values
L(2) |
≈ |
5.925769076 |
L(21) |
≈ |
5.925769076 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 5 | C1 | (1−pT)2 |
good | 3 | D4 | 1−8T+46T2−8p3T3+p6T4 |
| 7 | D4 | 1−8T+102T2−8p3T3+p6T4 |
| 11 | D4 | 1−64T+2822T2−64p3T3+p6T4 |
| 13 | D4 | 1−12T+2894T2−12p3T3+p6T4 |
| 17 | D4 | 1−4T−3994T2−4p3T3+p6T4 |
| 19 | D4 | 1−208T+22998T2−208p3T3+p6T4 |
| 23 | D4 | 1−120T+25030T2−120p3T3+p6T4 |
| 29 | D4 | 1+292T+63950T2+292p3T3+p6T4 |
| 31 | D4 | 1−176T+66462T2−176p3T3+p6T4 |
| 37 | D4 | 1+356T+126846T2+356p3T3+p6T4 |
| 41 | D4 | 1−100T+101942T2−100p3T3+p6T4 |
| 43 | D4 | 1+376T+161502T2+376p3T3+p6T4 |
| 47 | D4 | 1+280T+223190T2+280p3T3+p6T4 |
| 53 | D4 | 1−316T+308894T2−316p3T3+p6T4 |
| 59 | D4 | 1−720T+530758T2−720p3T3+p6T4 |
| 61 | D4 | 1+1268T+831342T2+1268p3T3+p6T4 |
| 67 | D4 | 1+744T+686894T2+744p3T3+p6T4 |
| 71 | D4 | 1+48T−424178T2+48p3T3+p6T4 |
| 73 | D4 | 1+940T+653334T2+940p3T3+p6T4 |
| 79 | D4 | 1−32T+276318T2−32p3T3+p6T4 |
| 83 | D4 | 1+1592T+1724174T2+1592p3T3+p6T4 |
| 89 | D4 | 1+780T+1506742T2+780p3T3+p6T4 |
| 97 | D4 | 1−1220T+2159046T2−1220p3T3+p6T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.90057976641195194326403702788, −12.07944666155499279161735114316, −11.59454307411752076025443783844, −11.43786892411146527381082739595, −10.48909510800178765538128060999, −9.946914282481845073682175216502, −9.374549824180792744869599810321, −9.132337644566011188498566344507, −8.724896961806542289458338668585, −8.200018756500394738665247039334, −7.32039364854479990015315683827, −7.14390397592921254683681862828, −6.28480277508495431318534754157, −5.57625104557087285003188415581, −5.01782670845119088910440796014, −4.06655852415350657571465781181, −3.19481007479969433618600058947, −3.02617259156789579275513362149, −1.70856544325521916667768543424, −1.29698493764042189011672068702,
1.29698493764042189011672068702, 1.70856544325521916667768543424, 3.02617259156789579275513362149, 3.19481007479969433618600058947, 4.06655852415350657571465781181, 5.01782670845119088910440796014, 5.57625104557087285003188415581, 6.28480277508495431318534754157, 7.14390397592921254683681862828, 7.32039364854479990015315683827, 8.200018756500394738665247039334, 8.724896961806542289458338668585, 9.132337644566011188498566344507, 9.374549824180792744869599810321, 9.946914282481845073682175216502, 10.48909510800178765538128060999, 11.43786892411146527381082739595, 11.59454307411752076025443783844, 12.07944666155499279161735114316, 12.90057976641195194326403702788