L(s) = 1 | − 10·5-s − 34·9-s − 124·13-s − 92·17-s + 75·25-s − 180·29-s − 428·37-s − 20·41-s + 340·45-s + 294·49-s − 1.35e3·53-s + 500·61-s + 1.24e3·65-s + 1.04e3·73-s + 427·81-s + 920·85-s + 1.94e3·89-s − 1.86e3·97-s − 1.20e3·101-s + 4.30e3·109-s − 4.36e3·113-s + 4.21e3·117-s − 2.58e3·121-s − 500·125-s + 127-s + 131-s + 137-s + ⋯ |
L(s) = 1 | − 0.894·5-s − 1.25·9-s − 2.64·13-s − 1.31·17-s + 3/5·25-s − 1.15·29-s − 1.90·37-s − 0.0761·41-s + 1.12·45-s + 6/7·49-s − 3.51·53-s + 1.04·61-s + 2.36·65-s + 1.67·73-s + 0.585·81-s + 1.17·85-s + 2.31·89-s − 1.95·97-s − 1.18·101-s + 3.78·109-s − 3.63·113-s + 3.33·117-s − 1.93·121-s − 0.357·125-s + 0.000698·127-s + 0.000666·131-s + 0.000623·137-s + ⋯ |
Λ(s)=(=(25600s/2ΓC(s)2L(s)Λ(4−s)
Λ(s)=(=(25600s/2ΓC(s+3/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
25600
= 210⋅52
|
Sign: |
1
|
Analytic conductor: |
89.1193 |
Root analytic conductor: |
3.07250 |
Motivic weight: |
3 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
2
|
Selberg data: |
(4, 25600, ( :3/2,3/2), 1)
|
Particular Values
L(2) |
= |
0 |
L(21) |
= |
0 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 5 | C1 | (1+pT)2 |
good | 3 | C22 | 1+34T2+p6T4 |
| 7 | C22 | 1−6p2T2+p6T4 |
| 11 | C22 | 1+2582T2+p6T4 |
| 13 | C2 | (1+62T+p3T2)2 |
| 17 | C2 | (1+46T+p3T2)2 |
| 19 | C22 | 1+2198T2+p6T4 |
| 23 | C22 | 1−12646T2+p6T4 |
| 29 | C2 | (1+90T+p3T2)2 |
| 31 | C22 | 1+36462T2+p6T4 |
| 37 | C2 | (1+214T+p3T2)2 |
| 41 | C2 | (1+10T+p3T2)2 |
| 43 | C22 | 1+154514T2+p6T4 |
| 47 | C22 | 1+49226T2+p6T4 |
| 53 | C2 | (1+678T+p3T2)2 |
| 59 | C22 | 1+241478T2+p6T4 |
| 61 | C2 | (1−250T+p3T2)2 |
| 67 | C22 | 1+599106T2+p6T4 |
| 71 | C22 | 1+581342T2+p6T4 |
| 73 | C2 | (1−522T+p3T2)2 |
| 79 | C22 | 1+217758T2+p6T4 |
| 83 | C22 | 1+999074T2+p6T4 |
| 89 | C2 | (1−970T+p3T2)2 |
| 97 | C2 | (1+934T+p3T2)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.14417407189950667783235657394, −11.72635719987079053075994375186, −11.19990040512809189244998901798, −10.85092715792755929576333917388, −10.18354381072050069418901439625, −9.506101788907985375513364111873, −9.120904275493744894244518951720, −8.590225515539206919452026639226, −7.80295355920318112079605761779, −7.64245355927736891419684440360, −6.82808572228664515094071631921, −6.47073839427840834831047605747, −5.25780113204589902706074526859, −5.14506212575153012544161861903, −4.34505219403782920223278302616, −3.50053540682691292918108792216, −2.71009757244035338446943905309, −2.05225850346205488929694359608, 0, 0,
2.05225850346205488929694359608, 2.71009757244035338446943905309, 3.50053540682691292918108792216, 4.34505219403782920223278302616, 5.14506212575153012544161861903, 5.25780113204589902706074526859, 6.47073839427840834831047605747, 6.82808572228664515094071631921, 7.64245355927736891419684440360, 7.80295355920318112079605761779, 8.590225515539206919452026639226, 9.120904275493744894244518951720, 9.506101788907985375513364111873, 10.18354381072050069418901439625, 10.85092715792755929576333917388, 11.19990040512809189244998901798, 11.72635719987079053075994375186, 12.14417407189950667783235657394