L(s) = 1 | + 8·3-s + 50·5-s + 104·7-s − 158·9-s + 320·11-s − 100·13-s + 400·15-s + 580·17-s + 720·19-s + 832·21-s + 1.68e3·23-s + 1.87e3·25-s − 1.09e3·27-s + 108·29-s + 9.84e3·31-s + 2.56e3·33-s + 5.20e3·35-s + 6.54e3·37-s − 800·39-s − 1.06e4·41-s + 2.56e4·43-s − 7.90e3·45-s + 2.82e4·47-s − 2.52e4·49-s + 4.64e3·51-s + 3.13e4·53-s + 1.60e4·55-s + ⋯ |
L(s) = 1 | + 0.513·3-s + 0.894·5-s + 0.802·7-s − 0.650·9-s + 0.797·11-s − 0.164·13-s + 0.459·15-s + 0.486·17-s + 0.457·19-s + 0.411·21-s + 0.665·23-s + 3/5·25-s − 0.289·27-s + 0.0238·29-s + 1.83·31-s + 0.409·33-s + 0.717·35-s + 0.785·37-s − 0.0842·39-s − 0.986·41-s + 2.11·43-s − 0.581·45-s + 1.86·47-s − 1.50·49-s + 0.249·51-s + 1.53·53-s + 0.713·55-s + ⋯ |
Λ(s)=(=(25600s/2ΓC(s)2L(s)Λ(6−s)
Λ(s)=(=(25600s/2ΓC(s+5/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
25600
= 210⋅52
|
Sign: |
1
|
Analytic conductor: |
658.508 |
Root analytic conductor: |
5.06570 |
Motivic weight: |
5 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 25600, ( :5/2,5/2), 1)
|
Particular Values
L(3) |
≈ |
5.544146337 |
L(21) |
≈ |
5.544146337 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 5 | C1 | (1−p2T)2 |
good | 3 | D4 | 1−8T+74pT2−8p5T3+p10T4 |
| 7 | D4 | 1−104T+36038T2−104p5T3+p10T4 |
| 11 | D4 | 1−320T+319702T2−320p5T3+p10T4 |
| 13 | D4 | 1+100T+297086T2+100p5T3+p10T4 |
| 17 | D4 | 1−580T+2475814T2−580p5T3+p10T4 |
| 19 | D4 | 1−720T+4633798T2−720p5T3+p10T4 |
| 23 | D4 | 1−1688T+10950502T2−1688p5T3+p10T4 |
| 29 | D4 | 1−108T+39233214T2−108p5T3+p10T4 |
| 31 | D4 | 1−9840T+76732702T2−9840p5T3+p10T4 |
| 37 | D4 | 1−6540T+61572814T2−6540p5T3+p10T4 |
| 41 | D4 | 1+10620T+77106582T2+10620p5T3+p10T4 |
| 43 | D4 | 1−25672T+364912302T2−25672p5T3+p10T4 |
| 47 | D4 | 1−28296T+617782998T2−28296p5T3+p10T4 |
| 53 | D4 | 1−31340T+755347886T2−31340p5T3+p10T4 |
| 59 | D4 | 1−30800T+1666896598T2−30800p5T3+p10T4 |
| 61 | D4 | 1−24540T+1447225822T2−24540p5T3+p10T4 |
| 67 | D4 | 1−34584T+2930656478T2−34584p5T3+p10T4 |
| 71 | D4 | 1+12400T+1143670702T2+12400p5T3+p10T4 |
| 73 | D4 | 1+7180T+284279286T2+7180p5T3+p10T4 |
| 79 | D4 | 1−71840T+7430807198T2−71840p5T3+p10T4 |
| 83 | D4 | 1+31928T+5910993662T2+31928p5T3+p10T4 |
| 89 | D4 | 1+40748T+8570866774T2+40748p5T3+p10T4 |
| 97 | D4 | 1+190140T+19653817414T2+190140p5T3+p10T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.10334818284488564526303324012, −11.82704543552943724380179264500, −11.18514327052685527468570444557, −10.81809875389543889540661304757, −10.01484352254298780920174565565, −9.769666204051376942254857200471, −9.049793603702300003964348872616, −8.762616218540841382037509222076, −8.121813769532523070459085255303, −7.70257791294607010306642768406, −6.83374691369088593480486999847, −6.47588285661736547919682466653, −5.49164078420755818348702884741, −5.40962893907297669090338215654, −4.42874427049231063031080235284, −3.81535126494829123129434427721, −2.70963162136766918405162495655, −2.50883897290513374612480264381, −1.34742039953208690732897125716, −0.847092076456144741237769181393,
0.847092076456144741237769181393, 1.34742039953208690732897125716, 2.50883897290513374612480264381, 2.70963162136766918405162495655, 3.81535126494829123129434427721, 4.42874427049231063031080235284, 5.40962893907297669090338215654, 5.49164078420755818348702884741, 6.47588285661736547919682466653, 6.83374691369088593480486999847, 7.70257791294607010306642768406, 8.121813769532523070459085255303, 8.762616218540841382037509222076, 9.049793603702300003964348872616, 9.769666204051376942254857200471, 10.01484352254298780920174565565, 10.81809875389543889540661304757, 11.18514327052685527468570444557, 11.82704543552943724380179264500, 12.10334818284488564526303324012